A new damage-locating method for bridges subjected to a moving load is presented, and a new ‘moving load dam- age-locating indicator’ (MLDI) is introduced. A vehicle is modeled as a moving load, the bridge is simpli...A new damage-locating method for bridges subjected to a moving load is presented, and a new ‘moving load dam- age-locating indicator’ (MLDI) is introduced. A vehicle is modeled as a moving load, the bridge is simplified as an Euler-Bernoulli beam, and the damage is simulated by a reduction of stiffness properties of the elements. The curvature and MLDI values at each node of the baseline model (undamaged) and the damage model are computed respectively. Then the damage or damages can be located from a sudden change of the MLDI value. The feasibility and effectiveness of the proposed method are validated by nu- merical simulation. The results indicate that the method is effective, being able to not only locate a single damage accurately, but also locate multiple damages in simply-supported bridges, including multiple damages in continuous bridges. The results also indicate that the MLDI can accurately locate damages under 5% measurement noise.展开更多
A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In t...A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.展开更多
Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real str...Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures.展开更多
基金This paper is supported by the National Natural Science Foundation of China(No.50479027)the Cultivation Fund of the Key Scientific and Technical Innovation Project,the Ministry of Education of China(No.704031)we express our deep thanks to Professor Sau-Lon James Hu for his useful suggestions.
文摘A new damage-locating method for bridges subjected to a moving load is presented, and a new ‘moving load dam- age-locating indicator’ (MLDI) is introduced. A vehicle is modeled as a moving load, the bridge is simplified as an Euler-Bernoulli beam, and the damage is simulated by a reduction of stiffness properties of the elements. The curvature and MLDI values at each node of the baseline model (undamaged) and the damage model are computed respectively. Then the damage or damages can be located from a sudden change of the MLDI value. The feasibility and effectiveness of the proposed method are validated by nu- merical simulation. The results indicate that the method is effective, being able to not only locate a single damage accurately, but also locate multiple damages in simply-supported bridges, including multiple damages in continuous bridges. The results also indicate that the MLDI can accurately locate damages under 5% measurement noise.
文摘A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.
基金Project (No. PIFI-2012 U. de Gto.) supported by the Secretariat of Public Education (SEP), Mexico
文摘Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures.