Coal burst is a dynamic release of energy within the rock (or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most ca...Coal burst is a dynamic release of energy within the rock (or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most catastrophic failures associated with the coal mining industry, which can often lead to injuries and fatalities of miners as well as significant production losses. This paper aims to examine the mecha- nisms contributing to coal burst occurrence, with an emphasis on the energy release concept. In this study, a numerical modelling study has been conducted to evaluate the roles and contributions of differ- ence energy components. The energy analysis presented in this paper can help to improve the under- standing of energy release mechanisms esoeciallv under Australian conditions.展开更多
Based on the engineering application, the angle range of rectifying airflow unit attaching diffusion tank is from 2.5° to 7.5°. In the range of average inlet velocity of 25.0 m/s to 55.0 m/s of diffusion tan...Based on the engineering application, the angle range of rectifying airflow unit attaching diffusion tank is from 2.5° to 7.5°. In the range of average inlet velocity of 25.0 m/s to 55.0 m/s of diffusion tank, numerical simulations of diffusion tank were done. The results of numerical simulations of diffusion tank are shown as follows: ③ In cases of the inlet velocity range from 25.0 m/s to 55.0 m/s, and the angle range of rectifying airflow unit from 2.5° to 7.5°, the average value of pressure losses decreases to the minimum when the angle is 4.5°.② In cases of the inlet velocity of 35.0 m/s, the pressure loss of diffusion tank decreases to the minimum when the angle of rectifying airflow unit is 5.5°. ③ As far as there are different angles of rectifying airflow unit, pressure loss increases gradually along with the addition of inlet velocity.展开更多
Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and sucti...Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and suction flow control technique can significantly improve cascade performance,especially in increasing the cascade loading and static pressure ratio as well as decreasing the loss coefficient.Meanwhile,it is more effective to improve cascade performance by blowing near leading edge on suction surface than suction near trailing edge.Both the locations and flow rates of blowing and suction are major impact factors of this method to cascade performance.Comparing to the baseline,the static pressure ratio increases by 15% and loss coefficient decreases by 80%,with a blowing fraction of 1.7% and a suction fraction of 1.38% of the inlet mass flow.展开更多
The detailed numerical simulation has been carried out to investigate the effect of synthetic jet excitation on the secondary flow at 5° incidence in a compressor cascade, in which the synthetic jet actuation is ...The detailed numerical simulation has been carried out to investigate the effect of synthetic jet excitation on the secondary flow at 5° incidence in a compressor cascade, in which the synthetic jet actuation is equipped on the suction surface. The influence of excitation position, one fixed near the trailing edge and the other fixed a little far from the trailing edge, has also been studied. The results show that unsteady disturbance of desirable synthetic jet effectively enhances the mixing of the fluid inside the separation region, which reduces the vortex intensity and the energy loss, improves the flow status in the cascade, and also suppresses velocity fluctuation near the trailing edge. Additionally, the actuation fixed near the separation region proves to be more effective and exit load distribution is more uniform due to the employment of the synthetic jet.展开更多
A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the num...A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.展开更多
It has been certificated that corridors can help giant pandas to keep their habitat from fragmenting. However there are still losses during the process of moving along corridors. In this study, a mathematical model wi...It has been certificated that corridors can help giant pandas to keep their habitat from fragmenting. However there are still losses during the process of moving along corridors. In this study, a mathematical model with Allee effect is carried out to describe the diffusion of giant pandas between n patches. Some criteria are obtained to keep the system persisting. It is proved that the system has a unique positive w-periodic solution which is globally asymptotically stable. The ecological meanings of these findings are discussed following the results. And some numerical simulations in the Qinling Mountain giant panda nature reservation area are also presented in the end.展开更多
文摘Coal burst is a dynamic release of energy within the rock (or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most catastrophic failures associated with the coal mining industry, which can often lead to injuries and fatalities of miners as well as significant production losses. This paper aims to examine the mecha- nisms contributing to coal burst occurrence, with an emphasis on the energy release concept. In this study, a numerical modelling study has been conducted to evaluate the roles and contributions of differ- ence energy components. The energy analysis presented in this paper can help to improve the under- standing of energy release mechanisms esoeciallv under Australian conditions.
基金Supported by the National Natural Science Foundation of China (51074073) the Project of Hunan Provincial Science & Technology Department (2010XK6066) the Project of Scientific Research Fund of Hunan Provincial Education Department (10C0675)
文摘Based on the engineering application, the angle range of rectifying airflow unit attaching diffusion tank is from 2.5° to 7.5°. In the range of average inlet velocity of 25.0 m/s to 55.0 m/s of diffusion tank, numerical simulations of diffusion tank were done. The results of numerical simulations of diffusion tank are shown as follows: ③ In cases of the inlet velocity range from 25.0 m/s to 55.0 m/s, and the angle range of rectifying airflow unit from 2.5° to 7.5°, the average value of pressure losses decreases to the minimum when the angle is 4.5°.② In cases of the inlet velocity of 35.0 m/s, the pressure loss of diffusion tank decreases to the minimum when the angle of rectifying airflow unit is 5.5°. ③ As far as there are different angles of rectifying airflow unit, pressure loss increases gradually along with the addition of inlet velocity.
基金support from the National Natural Science Foundation of China as part of the Free Application Project (No.50776003)supported and funded by the Key Program of Aviation Science Foundation,Grant No.2007ZB51018
文摘Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and suction flow control technique can significantly improve cascade performance,especially in increasing the cascade loading and static pressure ratio as well as decreasing the loss coefficient.Meanwhile,it is more effective to improve cascade performance by blowing near leading edge on suction surface than suction near trailing edge.Both the locations and flow rates of blowing and suction are major impact factors of this method to cascade performance.Comparing to the baseline,the static pressure ratio increases by 15% and loss coefficient decreases by 80%,with a blowing fraction of 1.7% and a suction fraction of 1.38% of the inlet mass flow.
基金National Natural Science Foundation of China for the support projects Grant No.50806006
文摘The detailed numerical simulation has been carried out to investigate the effect of synthetic jet excitation on the secondary flow at 5° incidence in a compressor cascade, in which the synthetic jet actuation is equipped on the suction surface. The influence of excitation position, one fixed near the trailing edge and the other fixed a little far from the trailing edge, has also been studied. The results show that unsteady disturbance of desirable synthetic jet effectively enhances the mixing of the fluid inside the separation region, which reduces the vortex intensity and the energy loss, improves the flow status in the cascade, and also suppresses velocity fluctuation near the trailing edge. Additionally, the actuation fixed near the separation region proves to be more effective and exit load distribution is more uniform due to the employment of the synthetic jet.
基金support for this work by the fundamental research funds for the Cen-tral Universities (Grant No. HIT. NSRIF. 201173)
文摘A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.
基金This work is supported by the National Science Foundation of China (No. Z13060), Beijing Higher Education Young Elite Teacher Project of China (No. YETP1655), Beijing Talents Fund (No. 2012D005017000003), Simulation and Evaluation of Indoor Environmental Comfort Improvement (No. 2013BAJ02B0404) and Youth Foundation of Beijing University of Civil Engineering and Architecture (No. Z12082).
文摘It has been certificated that corridors can help giant pandas to keep their habitat from fragmenting. However there are still losses during the process of moving along corridors. In this study, a mathematical model with Allee effect is carried out to describe the diffusion of giant pandas between n patches. Some criteria are obtained to keep the system persisting. It is proved that the system has a unique positive w-periodic solution which is globally asymptotically stable. The ecological meanings of these findings are discussed following the results. And some numerical simulations in the Qinling Mountain giant panda nature reservation area are also presented in the end.