We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the ...We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.展开更多
The method and instrument for permittivity measurements of high-loss substances as biological objects are presented.The results of improving the measuring cuvette by means of computer simulation and optimization of me...The method and instrument for permittivity measurements of high-loss substances as biological objects are presented.The results of improving the measuring cuvette by means of computer simulation and optimization of measurement system are described.The optimization carried out allows the application of the dielectrometer in the diagnostic test under development.展开更多
基金Supported by the Natural Science Foundation of China under Grant Nos.10575040,90503010,10634060,and 10874050 National Basic Research Program of China under Grant No.2005CB724508+1 种基金the Foundation from the Ministry of the National Education of China under Grant No.200804870051 the Science Innovation Foundation of Huazhong University of Science and Technology under Grant No.HF-06-010-08-012
文摘We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.
文摘The method and instrument for permittivity measurements of high-loss substances as biological objects are presented.The results of improving the measuring cuvette by means of computer simulation and optimization of measurement system are described.The optimization carried out allows the application of the dielectrometer in the diagnostic test under development.