根据电力行业的水质特点,电厂广泛采用中水作为除盐水的来水水源,水质相对于地表水而言水质较差,从而需要进行深度预处理。目前深度预处理工艺主要是全膜法工艺流程UF超滤 + 两级反渗透 + 混床工艺,而超滤在系统中发挥着重要的作用,也...根据电力行业的水质特点,电厂广泛采用中水作为除盐水的来水水源,水质相对于地表水而言水质较差,从而需要进行深度预处理。目前深度预处理工艺主要是全膜法工艺流程UF超滤 + 两级反渗透 + 混床工艺,而超滤在系统中发挥着重要的作用,也是保证反渗透稳定运行的关键设备。很多工程大部分采用的外压式超滤,而外压式进水口与反洗口方向固定不能调换,运行周期时间相对较短,且膜污染较严重,经多次反洗后不能完全达到初始状态,对此进行彻底展开分析试验比对,根据水质及工艺系统要求选择适宜的内压式超滤膜,在工艺设计方面通过增加适当的管路与阀门来实现超滤膜进水口与反洗口相互切换(即换向流运行),分析此系统运行的状况,延长超滤系统运行周期使用时间,减少膜反洗的频次从而提高系统制水率,从而达到节约用水的目的。According to the water quality characteristics of the power industry, power plants widely use reclaimed water as a source of desalinated water. The water quality is relatively poor compared to surface water, so deep pretreatment is needed. Currently, the main deep pretreatment process is the full membrane process UF ultrafiltration + two-stage reverse osmosis + mixed bed process. Ultrafiltration plays an important role in the system and is also a key equipment to ensure the stable operation of reverse osmosis. Many projects use external pressure ultrafiltration, and the direction of the external pressure inlet and backwash outlet is fixed and cannot be changed. The operating cycle time is relatively short, and the membrane pollution is severe. After multiple backwashing, it cannot fully reach the initial state. Therefore, a thorough analysis and experimental comparison are carried out, and suitable choices are selected based on water quality and process system requirements. Internal pressure ultrafiltration membrane, In terms of process design, appropriate pipelines and valves are added to achieve mutual switching between the ultrafiltration membrane inlet and backwash port (i.e. reversing flow operation), analyze the operation status of the system, extend the operating cycle of the ultrafiltration system, reduce the frequency of membrane backwashing, and improve the water production rate of the system, thereby achieving the goal of water conservation.展开更多
One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temper...One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temperature and pressure along the height in the two converters, respectively. Design optimization methods of the two converters have been proposed, by which the minimum catalyst volume can be obtained to satisfy the productive capacity of 1000 tons per day, when the operating pressure is 15.0, 10.0 and 7.5 MPa, respectively.展开更多
An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor u...An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented. Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation. Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained. The model was found to closely predict the reactor performance under a wide range of operating conditions, such as carbon oxide concentrations, volumetric flow rate, and cyclic period.展开更多
A new cycle-by-cycle control flyback converter with primary side detection and peak current mode control is proposed and its dynamic characteristics are analyzed. The flyback converter is verified by the OrCAD simulat...A new cycle-by-cycle control flyback converter with primary side detection and peak current mode control is proposed and its dynamic characteristics are analyzed. The flyback converter is verified by the OrCAD simulator. The main advantages of this converter over the conventional one are simplicity, small size, rapid regulating and no sensing control signals over the isolation barrier. The circuit is suitable for digital control implementations.展开更多
To determine the effects of HOE 694, a new and potent Na+- H+ exchanger blocker, on transient inward current (Iti) and Na+- Ca2+ exchange during hypoxia- reoxygenation in guinea pig cardiomyocytes. Methods. Cardio...To determine the effects of HOE 694, a new and potent Na+- H+ exchanger blocker, on transient inward current (Iti) and Na+- Ca2+ exchange during hypoxia- reoxygenation in guinea pig cardiomyocytes. Methods. Cardiomyocytes were isolated from adult guinea pig ventricle. Experiment was performed in an experimental chamber that allowed the cells to be exposed to a sufficiently low O2 pressure. The cells were subjected to hypoxia and reoxygenation. The ionic currents were studied with patch clamp technique. Results. In the absence of HOE 694, hypoxia- reoxygenation induced Iti in 12 of 15 experiments; but in cardiomyocytes pretreated with HOE 694 (10~ 50μ mol/L), the incidence of Iti observed during reoxygenation was reduced to 5 of 11 experiments and 3 of 10 experiments, P Conclusions. Blockade of the Na+- H+ exchange by HOE 694 could reduce Ca2+ overload upon hypoxia- reoxygenation, and inhibition of Na+- H+ exchange may also indirectly decrease Na+- Ca2+ exchange activity during hypoxia.展开更多
Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flo...Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flow coefficient of coupled throttling grooves is proposed to resolve that difficulty.With this purpose,an approach of a 3 D numerical simulation and an experimental bench were introduced based on the prototype of a commercial proportional valve.The results show consistency between the numerical simulation and the bench test.Based on that,the concept of‘saturation limit’is introduced to describe the value gap between the current and saturated flows,so that the flow-coefficient saturation limit of the prototype in the process can be deducted.Accordingly,an approximate flow coefficient suitable for coupled throttling grooves within finite variable space,which is based on three typical throttling structures(i.e.O-shape,U-shape,and C-shape)of the coupled throttling grooves,is obtained based on an orthogonal test.The model results are consistent with the numerical and experimental results,with maximum errors of less than 5.29%and 5.34%,respectively.This suggests that the proposed method is effective in approximating the flow coefficient.展开更多
A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different from...A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different from each other. However, the turbine characteristics have not been clarified to date. The performances of a unidirectional impulse turbine under steady flow conditions were investigated experimentaUy by using a wind tunnel with large piston/cylinder in this study. Then, efficiency of the twin impulse turbine have been estimated by a quasi-steady analysis using experimental results.展开更多
The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed a...The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed along the flow direction and tested under different amplitudes and flow rates.In the simulations,a spring-based smoothing method and a local remeshing technique are used to handle the moving boundary problems.Hybrid mesh is used to reduce the size of dynamic mesh domain and to improve computational efficiency.The experimental and numerical values of the time-averaged mean Nusselt number are found to be in good agreement,with deviations of less than 10%.The experimental result shows that the heat transfer performance of the heated surfaces is substantially enhanced with a vibrating piezoelectric fan.The numerical result shows that the heat transfer enhancement comes from the strong longitudinal vortex pairs generated by the piezoelectric fan,which significantly promote heat exchange between the main flow and the near-wall flow.In the case of a=0.66(a is the dimensionless amplitude)and Re=1820,the enhancement ratio of the time-averaged mean Nusselt number reaches 119.9%.展开更多
In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We...In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We can observe that the metamaterial-based filter possesses a band-pass transmission when the electrical field is along y direction, and it possesses a low-pass transmission when the electrical field is along x direction. Our results demonstrate that the proposed filter can realize the switching between band-pass effect and low-pass effect by only changing the polarization direction of the incident electromagnetic wave. Moreover, the calculated surface current distributions are also used to analyze the switchable mechanism of the THz metamatrial filter. Therefore, the proposed THz wave filter has a potential application in THz wave communication systems.展开更多
文摘根据电力行业的水质特点,电厂广泛采用中水作为除盐水的来水水源,水质相对于地表水而言水质较差,从而需要进行深度预处理。目前深度预处理工艺主要是全膜法工艺流程UF超滤 + 两级反渗透 + 混床工艺,而超滤在系统中发挥着重要的作用,也是保证反渗透稳定运行的关键设备。很多工程大部分采用的外压式超滤,而外压式进水口与反洗口方向固定不能调换,运行周期时间相对较短,且膜污染较严重,经多次反洗后不能完全达到初始状态,对此进行彻底展开分析试验比对,根据水质及工艺系统要求选择适宜的内压式超滤膜,在工艺设计方面通过增加适当的管路与阀门来实现超滤膜进水口与反洗口相互切换(即换向流运行),分析此系统运行的状况,延长超滤系统运行周期使用时间,减少膜反洗的频次从而提高系统制水率,从而达到节约用水的目的。According to the water quality characteristics of the power industry, power plants widely use reclaimed water as a source of desalinated water. The water quality is relatively poor compared to surface water, so deep pretreatment is needed. Currently, the main deep pretreatment process is the full membrane process UF ultrafiltration + two-stage reverse osmosis + mixed bed process. Ultrafiltration plays an important role in the system and is also a key equipment to ensure the stable operation of reverse osmosis. Many projects use external pressure ultrafiltration, and the direction of the external pressure inlet and backwash outlet is fixed and cannot be changed. The operating cycle time is relatively short, and the membrane pollution is severe. After multiple backwashing, it cannot fully reach the initial state. Therefore, a thorough analysis and experimental comparison are carried out, and suitable choices are selected based on water quality and process system requirements. Internal pressure ultrafiltration membrane, In terms of process design, appropriate pipelines and valves are added to achieve mutual switching between the ultrafiltration membrane inlet and backwash port (i.e. reversing flow operation), analyze the operation status of the system, extend the operating cycle of the ultrafiltration system, reduce the frequency of membrane backwashing, and improve the water production rate of the system, thereby achieving the goal of water conservation.
文摘One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temperature and pressure along the height in the two converters, respectively. Design optimization methods of the two converters have been proposed, by which the minimum catalyst volume can be obtained to satisfy the productive capacity of 1000 tons per day, when the operating pressure is 15.0, 10.0 and 7.5 MPa, respectively.
基金The authors are grateful for financial support from the National Natural Science Foundation of China (No. 29476223) and the Ministry of Chemical Industry of China (No. 95-23-01).
文摘An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented. Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation. Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained. The model was found to closely predict the reactor performance under a wide range of operating conditions, such as carbon oxide concentrations, volumetric flow rate, and cyclic period.
文摘A new cycle-by-cycle control flyback converter with primary side detection and peak current mode control is proposed and its dynamic characteristics are analyzed. The flyback converter is verified by the OrCAD simulator. The main advantages of this converter over the conventional one are simplicity, small size, rapid regulating and no sensing control signals over the isolation barrier. The circuit is suitable for digital control implementations.
基金This work was supported by Leading Specialty Funding of Shanghai, Grant No.94- III- 001.
文摘To determine the effects of HOE 694, a new and potent Na+- H+ exchanger blocker, on transient inward current (Iti) and Na+- Ca2+ exchange during hypoxia- reoxygenation in guinea pig cardiomyocytes. Methods. Cardiomyocytes were isolated from adult guinea pig ventricle. Experiment was performed in an experimental chamber that allowed the cells to be exposed to a sufficiently low O2 pressure. The cells were subjected to hypoxia and reoxygenation. The ionic currents were studied with patch clamp technique. Results. In the absence of HOE 694, hypoxia- reoxygenation induced Iti in 12 of 15 experiments; but in cardiomyocytes pretreated with HOE 694 (10~ 50μ mol/L), the incidence of Iti observed during reoxygenation was reduced to 5 of 11 experiments and 3 of 10 experiments, P Conclusions. Blockade of the Na+- H+ exchange by HOE 694 could reduce Ca2+ overload upon hypoxia- reoxygenation, and inhibition of Na+- H+ exchange may also indirectly decrease Na+- Ca2+ exchange activity during hypoxia.
基金Project supported by the National Key R&D Program of China(No.2018YFC0810203)。
文摘Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flow coefficient of coupled throttling grooves is proposed to resolve that difficulty.With this purpose,an approach of a 3 D numerical simulation and an experimental bench were introduced based on the prototype of a commercial proportional valve.The results show consistency between the numerical simulation and the bench test.Based on that,the concept of‘saturation limit’is introduced to describe the value gap between the current and saturated flows,so that the flow-coefficient saturation limit of the prototype in the process can be deducted.Accordingly,an approximate flow coefficient suitable for coupled throttling grooves within finite variable space,which is based on three typical throttling structures(i.e.O-shape,U-shape,and C-shape)of the coupled throttling grooves,is obtained based on an orthogonal test.The model results are consistent with the numerical and experimental results,with maximum errors of less than 5.29%and 5.34%,respectively.This suggests that the proposed method is effective in approximating the flow coefficient.
基金performed under the Cooperative Research Program of IOES,Institute of Ocean Energy,Saga University (Accept No. 10006D)
文摘A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different from each other. However, the turbine characteristics have not been clarified to date. The performances of a unidirectional impulse turbine under steady flow conditions were investigated experimentaUy by using a wind tunnel with large piston/cylinder in this study. Then, efficiency of the twin impulse turbine have been estimated by a quasi-steady analysis using experimental results.
基金Project supported by the National Natural Science Foundation of China(Nos.51575487 , 51875521)。
文摘The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed along the flow direction and tested under different amplitudes and flow rates.In the simulations,a spring-based smoothing method and a local remeshing technique are used to handle the moving boundary problems.Hybrid mesh is used to reduce the size of dynamic mesh domain and to improve computational efficiency.The experimental and numerical values of the time-averaged mean Nusselt number are found to be in good agreement,with deviations of less than 10%.The experimental result shows that the heat transfer performance of the heated surfaces is substantially enhanced with a vibrating piezoelectric fan.The numerical result shows that the heat transfer enhancement comes from the strong longitudinal vortex pairs generated by the piezoelectric fan,which significantly promote heat exchange between the main flow and the near-wall flow.In the case of a=0.66(a is the dimensionless amplitude)and Re=1820,the enhancement ratio of the time-averaged mean Nusselt number reaches 119.9%.
基金supported by the Major State Basic Research Development Program of China(No.2010CB934104)the Science and Technology Research Funding of State Cultural Relics Bureau Cultural Relics(No.20110135)+1 种基金the National Special Fund for the Development of Major Research Equipment and Instruments(No.2012YQ14000508)"985 Project"(No.0301-01402904)
文摘In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We can observe that the metamaterial-based filter possesses a band-pass transmission when the electrical field is along y direction, and it possesses a low-pass transmission when the electrical field is along x direction. Our results demonstrate that the proposed filter can realize the switching between band-pass effect and low-pass effect by only changing the polarization direction of the incident electromagnetic wave. Moreover, the calculated surface current distributions are also used to analyze the switchable mechanism of the THz metamatrial filter. Therefore, the proposed THz wave filter has a potential application in THz wave communication systems.