基于多焦点透镜的成像关系和光学实时器件,提出一种紧凑的非相干光学处理系统以实现实时数学形态变换.用光学方法实现了形态学中膨胀、腐蚀、开和闭等基本运算,并用这套光学系统对具有胡椒盐(Pepper and salt)噪声的输入图像进行处理,...基于多焦点透镜的成像关系和光学实时器件,提出一种紧凑的非相干光学处理系统以实现实时数学形态变换.用光学方法实现了形态学中膨胀、腐蚀、开和闭等基本运算,并用这套光学系统对具有胡椒盐(Pepper and salt)噪声的输入图像进行处理,得到无噪声干扰的图像输出,还给出了指纹经过系统骨架化的实验结果.展开更多
The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficul...The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficult to implement. This paper proposes an algorithm that combines the improved Hough transform and image comparison to identify the damage or loss of the manhole covers in complicated surface conditions by using existing urban road video images. Focusing on the pre-processed images, the edge contour tracking algorithm is applied to find all of the edges. Then with the improved Hough transformation, color recognition and image matching algorithm, the manhole cover area is found and the change rates of the manhole cover area are calculated. Based on the threshold of the change rates, it can be determined whether there is potential damage or loss in the manhole cover. Compared with the traditional Hough transform, the proposed method can effectively improve the processing speed and reduce invalid sampling and accumulation. Experimental results indicate that the proposed algorithm has the functions of effective positioning and early warning in the conditions of complex background, different perspectives, and different videoing time and conditions, such as when the target is partially covered.展开更多
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic ...In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic wave equation in theξ,ηdomain.The seismic wave field collected at the sea surface was downward continued to the ocean bottom by the inverse finite difference method with the water velocity and then was reversely continued to the ocean surface by the finite difference method using the layer velocity from just below the ocean bottom in the(ξ,η)domain.Simulation calculations and practical application show that this method can not only remove the reflection travel time distortion but also correct the dynamic parameter changes caused by the ocean bottom topography.The inverted velocity after wave field continuation is much more accurate than before continuation and the image section was greatly improved compared to the original wave field.展开更多
Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm su...Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.展开更多
This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of...This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of wavelet coefficients are used to reduce the number of domain blocks, which leads to lower bit cost required to represent the location information of fractal coding, and overall entropy constrained optimization is performed for the decision trees as well as for the sets of scalar quantizers and self quantizers of wavelet subtrees. Experiment results show that at the low bit rates, the proposed scheme gives about 1 dB improvement in PSNR over the reported results.展开更多
The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm ...The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.展开更多
A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. S...A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.展开更多
The pressure pulsation of axial piston pump is not only an important cause of rotation speed fluctuation,vibration noise and output stability of the hydraulic system,but also the main information source for obtaining ...The pressure pulsation of axial piston pump is not only an important cause of rotation speed fluctuation,vibration noise and output stability of the hydraulic system,but also the main information source for obtaining fault information.Hydraulic system is characterized by strong noise interference,which leads to low signal-to-noise ratio(SNR)of detection signals.Therefore,it is necessary to dig deep into the system operating state information carried by pressure signals.Firstly,based on flow loss mechanism of the plunger pump,the mapping relationship between flow pulsation and pressure pulsation is analyzed.After that,the pressure signal is filtered and reconstructed based on standard Gabor transform.Finally,according to the time-domain waveform morphology of pressure signal,four characteristic indicators are proposed to analyze the characteristics of pressure fluctuations under different working conditions.The experimental results show that the standard Gabor transform can accurately extract high-order harmonics and phase frequencies of the signal.The reconstructed time-domain waveform of pressure pulsation of the axial piston pump contains a wealth of operating status information,and the characteristics of pulsation changes under various working conditions can provide a new theoretical basis and a method support for fault diagnosis and health assessment of hydraulic pumps,motors and key components.展开更多
In order to prepare pyrimidine nucleoside-peptide conjugate concisely, we developed a one-pot synthetic strategy. Started from uridine, 5-S-acetyl-thiomethyl-2',3 '-di-O-isopropylidene-uridine (4) was synthesized ...In order to prepare pyrimidine nucleoside-peptide conjugate concisely, we developed a one-pot synthetic strategy. Started from uridine, 5-S-acetyl-thiomethyl-2',3 '-di-O-isopropylidene-uridine (4) was synthesized as the key intermediate in four steps. Under acidic condition, compound 4 was deprotected and reacted with PySS-R (8, 12, 15, Py = 2-pyridyl, R = amino acid or peptide) in one pot to form uridine conjugates (9, 13, 2) with disulfide bond as linker.展开更多
Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalizat...Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.展开更多
文摘基于多焦点透镜的成像关系和光学实时器件,提出一种紧凑的非相干光学处理系统以实现实时数学形态变换.用光学方法实现了形态学中膨胀、腐蚀、开和闭等基本运算,并用这套光学系统对具有胡椒盐(Pepper and salt)噪声的输入图像进行处理,得到无噪声干扰的图像输出,还给出了指纹经过系统骨架化的实验结果.
基金The Natural Science Fundation of Education Department of Anhui Province(No.KJ2012B051)
文摘The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficult to implement. This paper proposes an algorithm that combines the improved Hough transform and image comparison to identify the damage or loss of the manhole covers in complicated surface conditions by using existing urban road video images. Focusing on the pre-processed images, the edge contour tracking algorithm is applied to find all of the edges. Then with the improved Hough transformation, color recognition and image matching algorithm, the manhole cover area is found and the change rates of the manhole cover area are calculated. Based on the threshold of the change rates, it can be determined whether there is potential damage or loss in the manhole cover. Compared with the traditional Hough transform, the proposed method can effectively improve the processing speed and reduce invalid sampling and accumulation. Experimental results indicate that the proposed algorithm has the functions of effective positioning and early warning in the conditions of complex background, different perspectives, and different videoing time and conditions, such as when the target is partially covered.
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
基金sponsored by the National 973 Program of China(Grant No.2009CB219505)International Science&Technology Cooperation Program of China(Grant No.2010DFA21630)
文摘In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic wave equation in theξ,ηdomain.The seismic wave field collected at the sea surface was downward continued to the ocean bottom by the inverse finite difference method with the water velocity and then was reversely continued to the ocean surface by the finite difference method using the layer velocity from just below the ocean bottom in the(ξ,η)domain.Simulation calculations and practical application show that this method can not only remove the reflection travel time distortion but also correct the dynamic parameter changes caused by the ocean bottom topography.The inverted velocity after wave field continuation is much more accurate than before continuation and the image section was greatly improved compared to the original wave field.
基金The National Natural Science Foundation of China(No.60171006)the National Basic Research Programof China (973 Pro-gram) (No.2005CB724303).
文摘Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.
文摘This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of wavelet coefficients are used to reduce the number of domain blocks, which leads to lower bit cost required to represent the location information of fractal coding, and overall entropy constrained optimization is performed for the decision trees as well as for the sets of scalar quantizers and self quantizers of wavelet subtrees. Experiment results show that at the low bit rates, the proposed scheme gives about 1 dB improvement in PSNR over the reported results.
基金This work was supported by the National Natural Science Foundation of China (No.10704083),the Innovation Foundation of Chinese Academyof Sciences (No.KJCX1-YW-N30), and the Public Science and Technology Program of Shenzhen (No.SY200806260026A).
文摘The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.
基金Projects(90820302, 60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education, ChinaProject(2009FJ4030) supported by Academician Foundation of Hunan Province, China
文摘A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.
基金National Natural Science Foundation of China(No.51675399)。
文摘The pressure pulsation of axial piston pump is not only an important cause of rotation speed fluctuation,vibration noise and output stability of the hydraulic system,but also the main information source for obtaining fault information.Hydraulic system is characterized by strong noise interference,which leads to low signal-to-noise ratio(SNR)of detection signals.Therefore,it is necessary to dig deep into the system operating state information carried by pressure signals.Firstly,based on flow loss mechanism of the plunger pump,the mapping relationship between flow pulsation and pressure pulsation is analyzed.After that,the pressure signal is filtered and reconstructed based on standard Gabor transform.Finally,according to the time-domain waveform morphology of pressure signal,four characteristic indicators are proposed to analyze the characteristics of pressure fluctuations under different working conditions.The experimental results show that the standard Gabor transform can accurately extract high-order harmonics and phase frequencies of the signal.The reconstructed time-domain waveform of pressure pulsation of the axial piston pump contains a wealth of operating status information,and the characteristics of pulsation changes under various working conditions can provide a new theoretical basis and a method support for fault diagnosis and health assessment of hydraulic pumps,motors and key components.
基金National Natural Science Foundation of China(Grant No.20332010)the Ministry of Science and Technology of China(Grant No.2005BA711A04,2006AA02Z144).
文摘In order to prepare pyrimidine nucleoside-peptide conjugate concisely, we developed a one-pot synthetic strategy. Started from uridine, 5-S-acetyl-thiomethyl-2',3 '-di-O-isopropylidene-uridine (4) was synthesized as the key intermediate in four steps. Under acidic condition, compound 4 was deprotected and reacted with PySS-R (8, 12, 15, Py = 2-pyridyl, R = amino acid or peptide) in one pot to form uridine conjugates (9, 13, 2) with disulfide bond as linker.
基金National Natural Science Foundation of China under Grant No.10775097
文摘Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.