为了满足量产车辆的自动变速器控制单元(transmission control unit,TCU)软件需求,研究了离合器换挡控制参数自整定控制方法,对自整定控制软件的结构和控制框图进行了介绍。针对换挡过程中,速度阶段和转矩阶段的特点,区别于传统方法对...为了满足量产车辆的自动变速器控制单元(transmission control unit,TCU)软件需求,研究了离合器换挡控制参数自整定控制方法,对自整定控制软件的结构和控制框图进行了介绍。针对换挡过程中,速度阶段和转矩阶段的特点,区别于传统方法对压力传感器、纵向加速度传感器和发动机转矩精度的依赖,分别提出了基于换挡时间的有动力升挡和基于涡轮失速问题的有动力降挡自整定策略。在实车测试过程中,通过软件的自整定参数调整,学习后的换挡时间能够逐步逼近设定的目标值,同时发动机飞车、涡轮失速现象能够逐步消减,换挡品质得到明显提升,保证了不同整车、不同发动机、不同变速器集成之后的换挡品质一致性,以及整车在产品生命周期内的驾驶性能一致性。实车采用该控制方法,在若干次相同工况的重复驾驶后,冲击点能明显弱化直至消除,冲击度逐步消减到低于5 m/s3,达到量产车辆水平,满足了某自主品牌车型投放上市要求。该研究对自动变速器换挡控制参数自整定策略研究和软件开发提供了参考。展开更多
文摘为了满足量产车辆的自动变速器控制单元(transmission control unit,TCU)软件需求,研究了离合器换挡控制参数自整定控制方法,对自整定控制软件的结构和控制框图进行了介绍。针对换挡过程中,速度阶段和转矩阶段的特点,区别于传统方法对压力传感器、纵向加速度传感器和发动机转矩精度的依赖,分别提出了基于换挡时间的有动力升挡和基于涡轮失速问题的有动力降挡自整定策略。在实车测试过程中,通过软件的自整定参数调整,学习后的换挡时间能够逐步逼近设定的目标值,同时发动机飞车、涡轮失速现象能够逐步消减,换挡品质得到明显提升,保证了不同整车、不同发动机、不同变速器集成之后的换挡品质一致性,以及整车在产品生命周期内的驾驶性能一致性。实车采用该控制方法,在若干次相同工况的重复驾驶后,冲击点能明显弱化直至消除,冲击度逐步消减到低于5 m/s3,达到量产车辆水平,满足了某自主品牌车型投放上市要求。该研究对自动变速器换挡控制参数自整定策略研究和软件开发提供了参考。