Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the b...Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the beacon synchronization of the improvement system with the “Beidou” one-way time transfer model is realized.The direct digital synthesis (DDS) is adopted to generate the pseudo-random code clock having high precision and stability. Meanwhile, the CPLD device is used to design the synchronization pulse picking-up module, the spread spectrum PN code generator and the spread spectrum modulator. Measurement results indicate that the beacon synchronization has the high precision and the stability.展开更多
If the rigidity of a mechanism is stiff enough, the position synchronous error of the two cylinders driving one degree-of-freedom (DOF) of the mechanism may be less than the resolution of position sensors. To handle...If the rigidity of a mechanism is stiff enough, the position synchronous error of the two cylinders driving one degree-of-freedom (DOF) of the mechanism may be less than the resolution of position sensors. To handle this synchronization problem this paper proposes a force/position switching scheme, which partitions the two cylinders into a master cylinder and a slave cylinder. The master cylinder is always position tracking controlled by a second-order sliding mode controller and the slave cylinder is integrated with a force tracking controller which is a first order sliding mode controller. When the position tracking error is less than a given value, the slave cylinder switches to be force controlled. Two synchronization control methods are presented based on the switching scheme: the master - master + force/position switching control and the master - slave + force/position switching control. Simulations show that the formance compared with two given proposed synchronization control position-based control methods. methods can get a better per-展开更多
文摘Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the beacon synchronization of the improvement system with the “Beidou” one-way time transfer model is realized.The direct digital synthesis (DDS) is adopted to generate the pseudo-random code clock having high precision and stability. Meanwhile, the CPLD device is used to design the synchronization pulse picking-up module, the spread spectrum PN code generator and the spread spectrum modulator. Measurement results indicate that the beacon synchronization has the high precision and the stability.
基金Supported by the Major State Basic Research Development Program of China(No.2006CB5406)Important National Science&Technology Specific Projects(No.2009ZX04002-061,2009ZX04004-102)
文摘If the rigidity of a mechanism is stiff enough, the position synchronous error of the two cylinders driving one degree-of-freedom (DOF) of the mechanism may be less than the resolution of position sensors. To handle this synchronization problem this paper proposes a force/position switching scheme, which partitions the two cylinders into a master cylinder and a slave cylinder. The master cylinder is always position tracking controlled by a second-order sliding mode controller and the slave cylinder is integrated with a force tracking controller which is a first order sliding mode controller. When the position tracking error is less than a given value, the slave cylinder switches to be force controlled. Two synchronization control methods are presented based on the switching scheme: the master - master + force/position switching control and the master - slave + force/position switching control. Simulations show that the formance compared with two given proposed synchronization control position-based control methods. methods can get a better per-