In order to archive, quality control and disseminate a large variety of marine data in a marine data exchange platfonn, a marine XML has been developed to encapsulate marine data, which provides an efficient means to ...In order to archive, quality control and disseminate a large variety of marine data in a marine data exchange platfonn, a marine XML has been developed to encapsulate marine data, which provides an efficient means to store, transfer and display marine data. This paper first presents the details of the main marine XML elements and then gives an example showing how to transform CTD-observed data into Marine XML format, which illustrates the XML encapsulation process of marine observed data.展开更多
In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave ...In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave model SWAN is applied to simulate the typhoon wave generated by Typhoon Winnie. The model results are compared with the TOPEX/POSEIDON and ERS-2 satellite altimeter data and analyzed in details. Then the distribution of wave fields are analyzed, with the results showing that applying SWAN to simulate large-scale domain can also fairly reproduce the observed features of waves and realistically reflect the distribution of typhoon waves.展开更多
The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects ...The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton-Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.展开更多
The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fra...The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.展开更多
Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground refl...Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.展开更多
基金funds of Ocean University of China Research Initiation Grant and the National 908 Project entitled ‘Marine Information Exchange and Integration Technology Based on XML’ (No 908-03-01-07)
文摘In order to archive, quality control and disseminate a large variety of marine data in a marine data exchange platfonn, a marine XML has been developed to encapsulate marine data, which provides an efficient means to store, transfer and display marine data. This paper first presents the details of the main marine XML elements and then gives an example showing how to transform CTD-observed data into Marine XML format, which illustrates the XML encapsulation process of marine observed data.
基金Experiments Coupling Typhoons, Waves and Storm Surges in the South China Sea andEstimation and Prediction of Typhoon-inflicted Disasters, a project from the Research Fund for Tropical andMarine MeteorologyNatural Science Foundation of China (40333026)
文摘In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave model SWAN is applied to simulate the typhoon wave generated by Typhoon Winnie. The model results are compared with the TOPEX/POSEIDON and ERS-2 satellite altimeter data and analyzed in details. Then the distribution of wave fields are analyzed, with the results showing that applying SWAN to simulate large-scale domain can also fairly reproduce the observed features of waves and realistically reflect the distribution of typhoon waves.
基金supported by the National Natural Science Foundation of China(No.41574067)863 Program(No.2012AA09A404)
文摘The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton-Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
文摘The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.
基金supported by the National Natural Science Foundation of China(No.41422403)
文摘Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.