For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va...For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.展开更多
Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tr...Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.展开更多
A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of fl...A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly,the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacityflow rates are pretreated; Secondly, several rules are proposed to establish the superstructuremodel of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly,the improving genetic algorithm is applied to solve the mathematical model established at the secondstep effectively, and the original optimal structure of HEN based on the maximum operation limitingcondition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat loadof heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operationcondition between the upper and down bounds of supply temperature and heat capacity flow rates canbe obtained based on the original optimal structure of HEN by means of these rules. A case studydemonstrates the method presented in this paper is effective展开更多
A heat transfer model for three-fluid separated heat pipe exchanger was analyzed,and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter-flow mode was o...A heat transfer model for three-fluid separated heat pipe exchanger was analyzed,and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter-flow mode was obtained.It was found that the forms of temperature transfer matrix are similar for heat pipe rows with equal or different heat transfer surface area.Furthermore,by using the temperature transfer matrix of the heat pipe exchanger,the relationship between heat transfer effectiveness θ 1,θ 2 and M,NTU,U,Δt i were derived for the exchanger operating in parallel-flow or counter-flow mode,and a simple special example was adopted to demonstrate the correctness of these relationships.展开更多
The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out ...The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shills to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supereritical heater when the heat source fluid temperature is very high compared with the absorb- ing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the itcrativc method in all conditions rather than taking for granted.展开更多
In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, ...In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.展开更多
基金Project (2012AA053001) supported by High-tech Research and Development Program of China
文摘For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No.RO 294/9).
文摘Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.
基金Supported by the State Major Basic Research Department Program of China (No. G20000263) and the Deutsche Forschungs- gemeinschaft(DFG)(No. RO294/9).
文摘A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly,the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacityflow rates are pretreated; Secondly, several rules are proposed to establish the superstructuremodel of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly,the improving genetic algorithm is applied to solve the mathematical model established at the secondstep effectively, and the original optimal structure of HEN based on the maximum operation limitingcondition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat loadof heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operationcondition between the upper and down bounds of supply temperature and heat capacity flow rates canbe obtained based on the original optimal structure of HEN by means of these rules. A case studydemonstrates the method presented in this paper is effective
文摘A heat transfer model for three-fluid separated heat pipe exchanger was analyzed,and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter-flow mode was obtained.It was found that the forms of temperature transfer matrix are similar for heat pipe rows with equal or different heat transfer surface area.Furthermore,by using the temperature transfer matrix of the heat pipe exchanger,the relationship between heat transfer effectiveness θ 1,θ 2 and M,NTU,U,Δt i were derived for the exchanger operating in parallel-flow or counter-flow mode,and a simple special example was adopted to demonstrate the correctness of these relationships.
基金Project 51306198 supported by National Natural Science Foundation of China is gratefully acknowledged
文摘The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shills to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supereritical heater when the heat source fluid temperature is very high compared with the absorb- ing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the itcrativc method in all conditions rather than taking for granted.
基金supported by the National Basic Research Program of China"973"Program)(Grant No.2011CB710705)the strategic priority research program of the Chinese Academy of Sciences(Grant No.XDA03010500)
文摘In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.