为提高传统直流输电(line-commutated-converter high voltage direct current,LCC-HVDC)换相能力,提出一种适用于串入LCC-HVDC阀臂的半控型H桥子模块拓扑结构。它由晶闸管和电容器构成,从提高LCC-HVDC系统阀臂电压可控性的角度增大换...为提高传统直流输电(line-commutated-converter high voltage direct current,LCC-HVDC)换相能力,提出一种适用于串入LCC-HVDC阀臂的半控型H桥子模块拓扑结构。它由晶闸管和电容器构成,从提高LCC-HVDC系统阀臂电压可控性的角度增大换相电压裕度。设计了子模块的工作原理及其基本控制策略,分析了子模块晶闸管电压电流应力及电容器相关参数,仿真计算了换相失败免疫因子与子模块个数关系。PSCAD仿真表明,阀臂串入半控型H桥子模块的LCC-HVDC,系统对称及不对称故障下其换相失败发生概率明显降低。研究结果验证了子模块拓扑的有效性及可行性,为解决换相失败问题提供了一定的思路。展开更多
文摘为提高传统直流输电(line-commutated-converter high voltage direct current,LCC-HVDC)换相能力,提出一种适用于串入LCC-HVDC阀臂的半控型H桥子模块拓扑结构。它由晶闸管和电容器构成,从提高LCC-HVDC系统阀臂电压可控性的角度增大换相电压裕度。设计了子模块的工作原理及其基本控制策略,分析了子模块晶闸管电压电流应力及电容器相关参数,仿真计算了换相失败免疫因子与子模块个数关系。PSCAD仿真表明,阀臂串入半控型H桥子模块的LCC-HVDC,系统对称及不对称故障下其换相失败发生概率明显降低。研究结果验证了子模块拓扑的有效性及可行性,为解决换相失败问题提供了一定的思路。