We study an anyon model in a toric honeycomb lattice. The ground states and the low-lying excitations coincide with those of Kitaev toric code model and then the excitations obey mutual semionic statistics. This model...We study an anyon model in a toric honeycomb lattice. The ground states and the low-lying excitations coincide with those of Kitaev toric code model and then the excitations obey mutual semionic statistics. This model is helpful to understand the toric code of anyons in a more symmetric way. On the other hand, there is a direct relation between this toric honeycomb model and a boundary coupled Ising chain array in a square lattice via Jordan-Wigner transformation. We discuss the equivalence between these two models in the low-lying sector and realize these anyon excitations in a conventional fermion system. The analysis for the ground state degeneracy in the last section can also be thought of as a complementarity of our previous work [Phys. A: Math. Theor. 43 (2010) 105306].展开更多
基金Supported by National Natural Science Foundation of Chinathe National Program for Basic Research of MOST of Chinathe Key Lab of Frontiers in Theoretical Physics of CAS and a Fund From CAS
文摘We study an anyon model in a toric honeycomb lattice. The ground states and the low-lying excitations coincide with those of Kitaev toric code model and then the excitations obey mutual semionic statistics. This model is helpful to understand the toric code of anyons in a more symmetric way. On the other hand, there is a direct relation between this toric honeycomb model and a boundary coupled Ising chain array in a square lattice via Jordan-Wigner transformation. We discuss the equivalence between these two models in the low-lying sector and realize these anyon excitations in a conventional fermion system. The analysis for the ground state degeneracy in the last section can also be thought of as a complementarity of our previous work [Phys. A: Math. Theor. 43 (2010) 105306].