For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decompositio...For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decomposition algorithm of a multi-input XOR/AND gate,and the multiple segment algorithm of polarity conversion,this paper successfully applies the whole annealing genetic algorithm (WAGA) to find the best polarity of an RM circuit. Through testing eight large-scale circuits from the Microelectronics Center North Carolina (MCNC) Benchmark, the SYNOPSYS synthesis results show that the RM circuits corresponding to the best polarity found using the proposed algorithm attain average power,area,and max delay savings of 77.2% ,62.4% ,and 9.2% respectively,compared with those under polarity 0.展开更多
This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is reali...This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is realized using just four amplifiers with a separate sample-and-hold block. It employs two key techniques: a high bandwidth low-power gain-boosting telescopic amplifiers technique and a low power low offset dynamic comparators technique.The ADC achieves a 8.1 effective number of bits,a maximum differential nonlinearity of a 0.85 least significant bit(LSB), and maximum integral nonlinearity of 2.2LSB for a 0.5MHz input at full sampling rate. It occupies 1.24mm^2 ,which also includes a bandgap and a voltage reference circuit and dissipates only 59mW.展开更多
A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and ...A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.展开更多
A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a ta...A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.展开更多
Aiming at the significance of the energy controls of wireless sensor networks, an economical energy consumption algorithm for wireless communicating in Wireless Sensor Networks (WSN) is presented. Based on the algorit...Aiming at the significance of the energy controls of wireless sensor networks, an economical energy consumption algorithm for wireless communicating in Wireless Sensor Networks (WSN) is presented. Based on the algorithm, the maximal system throughput of WSN is analyzed, and the upper bound of throughput of WSN is proposed and proved. Some numerical simulations are conducted and analyzed. The conclusions include that the transmitting radius of sensor node and the parameters of the energy cost function have significant influence upon the throughput, but the monitoring region radius has little influence. For the same transmitting distance, the more the hopping of information trans- mitting, the better the throughput of WSN. On the other hand, for the energy optimization of the whole WSN, the trade-off problem between the throughput capacity and the relay nodes is proposed, and the specific expression of relay hops that minimized the energy consumptions and the maximal throughput of WSN under the specific situation is derived.展开更多
For applications requiring low-power,low-voltage and real-time,a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed. Marr wavelet is approximated by a...For applications requiring low-power,low-voltage and real-time,a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed. Marr wavelet is approximated by a parameterized class of function and with Levenbery-Marquardt nonlinear least square method,the optimum parameters of this function are obtained. The circuits of implementating Marr wavelet transform are composed of analog filter whose impulse response is the required wavelet. The filter design is based on IFLF structure with CMOS log-domain integrators as the main building blocks. SPICE simulations indicate an excellent approximations of ideal wavelet.展开更多
The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficienc...The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficiency, high fuel consumption, and large consumption of water, electricity and steam areanalyzed, and measures for improvement are proposed.展开更多
The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VpwL),...The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VpwL), negative word-line voltage (VinyL) and half-VDD voltage (VHDo) generator. To generate a process voltage temperature (PVT)-insensitive VpWL and VNWL, a set of circuits were proposed to generate reference voltages using bandgap reference current generators for respective voltage level detectors. Also, a VOWL regulator and a VNWL charge pump were proposed for a small-area and low-power design. The proposed VpwL regulator can provide a large driving current with a small area since it regulates an input voltage (VCI) from 2.5 to 3.3 V. The VmvL charge pump can be implemented as a high-efficiency circuit with a small area and low power since it can transfer pumped charges to VNWL node entirely. The DC-DC converter for 1 T SRAM were designed with 0.11 μm mixed signal process and operated well with satisfactory measurement results.展开更多
There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in orde...There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.展开更多
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ...A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.展开更多
In the near future, the use of FCVs (fuel cell vehicles) is expected to help mitigate environmental problems such as exhaustion of fossil fuels and greenhouse gas emissions. Manufacturers publish an FCV's specific ...In the near future, the use of FCVs (fuel cell vehicles) is expected to help mitigate environmental problems such as exhaustion of fossil fuels and greenhouse gas emissions. Manufacturers publish an FCV's specific fuel consumption, but not its dynamic characteristics such as fuel consumption ratio and motor power ratio. Thus, it is difficult to reflect the dynamic characteristics of FCVs in lifecycle system evaluation. To solve this problem, we propose a fuel-consumption simulation method for FCVs using a 1.2 kW stationary PEMFC (proton exchange membrane fuel cell). In this study, the specific fuel consumption under driving cycles such as the Japanese 10-15 and the JC08 modes are determined and compared with the FCV simulation results obtained using fuel consumption ratios derived from the stationary PEMFC. In the simulation, the specific fuel consumption was found to be 1.16 kg-H2/100-km for the base case under the Japanese 10-15 driving cycle.展开更多
This study attempts to explore a possible mode of language switching process of multilinguals (Russian-English-Chinese) from the perspectives of language-switching cost based on event- related potentials (ERP). Th...This study attempts to explore a possible mode of language switching process of multilinguals (Russian-English-Chinese) from the perspectives of language-switching cost based on event- related potentials (ERP). Thirty Belarusians studying Chinese in China participated in this experiment. Behavioral results show under three-language-switching-conditions, the mean response time for switch trials is shorter than non-switch trials. Switching cost between Russian and English, Russian and Chinese is symmetric, while English and Chinese is asymmetric. ERP results indicate a negative deflection peaking around 320 ms is observed under conditions of L2-L1 and L3-L1 switching over the entire bilateral frontal sites. The study proposes a processing mode based on the idea of conflict discovery and resolution to contribute to a further understanding of language switching mechanisms.展开更多
This paper investigates the MED (Minimum Entransy Dissipation) optimization of heat transfer processes with the generalized heat transfer law q ∝ (A(T^n))m. For the fixed amount of heat transfer, the optimal te...This paper investigates the MED (Minimum Entransy Dissipation) optimization of heat transfer processes with the generalized heat transfer law q ∝ (A(T^n))m. For the fixed amount of heat transfer, the optimal temperature paths for the MED are obtained The results show that the strategy of the MED with generalized convective law q ∝ (△T)^m is that the temperature difference keeps constant, which is in accordance with the famous temperature-difference-field uniformity principle, while the strategy of the MED with linear phenomenological law q ∝ A(T^-1) is that the temperature ratio keeps constant. For special cases with Dulong-Petit law q ∝ (△T)^1.25 and an imaginary complex law q ∝ (△(T^4))^1.25, numerical examples are provided and further compared with the strategies of the MEG (Minimum Entropy Generation), CHF (Constant Heat Flux) and CRT (Constant Reservoir Temperature) operations. Besides, influences of the change of the heat transfer amount on the optimization results with various heat resistance models are discussed in detail.展开更多
The application of antimony sulfide(Sb_(2)S_(3))has been limited mainly to the energy storage and photoelectric conversion fields.However,in this work,the application of Sb_(2)S_(3) is extended to the field of electro...The application of antimony sulfide(Sb_(2)S_(3))has been limited mainly to the energy storage and photoelectric conversion fields.However,in this work,the application of Sb_(2)S_(3) is extended to the field of electromagnetic(EM)wave absorption for the first time.High-permittivity Sb_(2)S_(3) singlecrystal nanorods were prepared successfully and exhibited excellent performance,with a low reflection loss of -65.9 dB(13.0 GHz,3.8 mm)and an ultra-wide effective absorption bandwidth of 9.5 GHz(8.5-18.0 GHz,4.1 mm).After excluding the general absorption mechanisms,including conductive losses,interfacial polarization,and dipole polarization,the distinctive single-crystal volume polarization affected by shape anisotropy was proposed.This work not only meets the challenge of a single-component dielectric material design but also introduces a new concept for construction of efficient dielectric EM wave absorption material.展开更多
Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonst...Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.展开更多
In the present work, water and olive oil are taken as working fluids to study the influence of viscous heating on the entransy dissipation caused by heat transfer in two-fluid heat exchangers. The results show that th...In the present work, water and olive oil are taken as working fluids to study the influence of viscous heating on the entransy dissipation caused by heat transfer in two-fluid heat exchangers. The results show that the influence of viscous heating on the entransy loss associated with heat transfer can not be neglected for the liquids having large dynamic viscosity. The viscous heating effect maintains the heat transfer ability of the working fluids, relatively reduces the entransy loss in heat exchangers; the viscous heating effect relatively augments the entropy generation due to heat transfer and the available energy destruction in heat exchangers. For the working fluid having large dynamic viscosity, the increasing rates of the entransy and entropy generation contributed by the viscous heating are even larger than those contributed by heat transfer, when the mass flow rate of working fluid reaches a certain value under the fixed heat transfer area condition. Thus, the entransy loss rate decreases and the growth rate of entropy generation increases as the mass flow rate of the working fluid increases. Under the same other conditions, the heat transfer entransy loss rate and entropy generation rate per unit heat transfer rate obtained when the fluid having a smaller heat capacity rate is cold fluid are less than those obtained when the fluid having a smaller heat capacity rate is hot fluid.展开更多
文摘For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decomposition algorithm of a multi-input XOR/AND gate,and the multiple segment algorithm of polarity conversion,this paper successfully applies the whole annealing genetic algorithm (WAGA) to find the best polarity of an RM circuit. Through testing eight large-scale circuits from the Microelectronics Center North Carolina (MCNC) Benchmark, the SYNOPSYS synthesis results show that the RM circuits corresponding to the best polarity found using the proposed algorithm attain average power,area,and max delay savings of 77.2% ,62.4% ,and 9.2% respectively,compared with those under polarity 0.
文摘This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is realized using just four amplifiers with a separate sample-and-hold block. It employs two key techniques: a high bandwidth low-power gain-boosting telescopic amplifiers technique and a low power low offset dynamic comparators technique.The ADC achieves a 8.1 effective number of bits,a maximum differential nonlinearity of a 0.85 least significant bit(LSB), and maximum integral nonlinearity of 2.2LSB for a 0.5MHz input at full sampling rate. It occupies 1.24mm^2 ,which also includes a bandgap and a voltage reference circuit and dissipates only 59mW.
文摘A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.
文摘A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.
文摘Aiming at the significance of the energy controls of wireless sensor networks, an economical energy consumption algorithm for wireless communicating in Wireless Sensor Networks (WSN) is presented. Based on the algorithm, the maximal system throughput of WSN is analyzed, and the upper bound of throughput of WSN is proposed and proved. Some numerical simulations are conducted and analyzed. The conclusions include that the transmitting radius of sensor node and the parameters of the energy cost function have significant influence upon the throughput, but the monitoring region radius has little influence. For the same transmitting distance, the more the hopping of information trans- mitting, the better the throughput of WSN. On the other hand, for the energy optimization of the whole WSN, the trade-off problem between the throughput capacity and the relay nodes is proposed, and the specific expression of relay hops that minimized the energy consumptions and the maximal throughput of WSN under the specific situation is derived.
文摘For applications requiring low-power,low-voltage and real-time,a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed. Marr wavelet is approximated by a parameterized class of function and with Levenbery-Marquardt nonlinear least square method,the optimum parameters of this function are obtained. The circuits of implementating Marr wavelet transform are composed of analog filter whose impulse response is the required wavelet. The filter design is based on IFLF structure with CMOS log-domain integrators as the main building blocks. SPICE simulations indicate an excellent approximations of ideal wavelet.
文摘The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficiency, high fuel consumption, and large consumption of water, electricity and steam areanalyzed, and measures for improvement are proposed.
基金supported by the Second Stage of Brain Korea 21 Projectsfinancially supported by Changwon National University in 2011-2013
文摘The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VpwL), negative word-line voltage (VinyL) and half-VDD voltage (VHDo) generator. To generate a process voltage temperature (PVT)-insensitive VpWL and VNWL, a set of circuits were proposed to generate reference voltages using bandgap reference current generators for respective voltage level detectors. Also, a VOWL regulator and a VNWL charge pump were proposed for a small-area and low-power design. The proposed VpwL regulator can provide a large driving current with a small area since it regulates an input voltage (VCI) from 2.5 to 3.3 V. The VmvL charge pump can be implemented as a high-efficiency circuit with a small area and low power since it can transfer pumped charges to VNWL node entirely. The DC-DC converter for 1 T SRAM were designed with 0.11 μm mixed signal process and operated well with satisfactory measurement results.
文摘There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.
基金Supported by the National Natural Science Foundation of China(21406124)
文摘A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.
文摘In the near future, the use of FCVs (fuel cell vehicles) is expected to help mitigate environmental problems such as exhaustion of fossil fuels and greenhouse gas emissions. Manufacturers publish an FCV's specific fuel consumption, but not its dynamic characteristics such as fuel consumption ratio and motor power ratio. Thus, it is difficult to reflect the dynamic characteristics of FCVs in lifecycle system evaluation. To solve this problem, we propose a fuel-consumption simulation method for FCVs using a 1.2 kW stationary PEMFC (proton exchange membrane fuel cell). In this study, the specific fuel consumption under driving cycles such as the Japanese 10-15 and the JC08 modes are determined and compared with the FCV simulation results obtained using fuel consumption ratios derived from the stationary PEMFC. In the simulation, the specific fuel consumption was found to be 1.16 kg-H2/100-km for the base case under the Japanese 10-15 driving cycle.
基金supported by the National Social Science Foundation of China[Grant number 13BYY072]
文摘This study attempts to explore a possible mode of language switching process of multilinguals (Russian-English-Chinese) from the perspectives of language-switching cost based on event- related potentials (ERP). Thirty Belarusians studying Chinese in China participated in this experiment. Behavioral results show under three-language-switching-conditions, the mean response time for switch trials is shorter than non-switch trials. Switching cost between Russian and English, Russian and Chinese is symmetric, while English and Chinese is asymmetric. ERP results indicate a negative deflection peaking around 320 ms is observed under conditions of L2-L1 and L3-L1 switching over the entire bilateral frontal sites. The study proposes a processing mode based on the idea of conflict discovery and resolution to contribute to a further understanding of language switching mechanisms.
基金supported by the National Natural Science Foundation of China(Grant Nos.51576207,51356001&51579244)
文摘This paper investigates the MED (Minimum Entransy Dissipation) optimization of heat transfer processes with the generalized heat transfer law q ∝ (A(T^n))m. For the fixed amount of heat transfer, the optimal temperature paths for the MED are obtained The results show that the strategy of the MED with generalized convective law q ∝ (△T)^m is that the temperature difference keeps constant, which is in accordance with the famous temperature-difference-field uniformity principle, while the strategy of the MED with linear phenomenological law q ∝ A(T^-1) is that the temperature ratio keeps constant. For special cases with Dulong-Petit law q ∝ (△T)^1.25 and an imaginary complex law q ∝ (△(T^4))^1.25, numerical examples are provided and further compared with the strategies of the MEG (Minimum Entropy Generation), CHF (Constant Heat Flux) and CRT (Constant Reservoir Temperature) operations. Besides, influences of the change of the heat transfer amount on the optimization results with various heat resistance models are discussed in detail.
基金supported by the National Natural Science Foundation of China(51572157,21902085,and 51702188)the Natural Science Foundation of Shandong Province(ZR2019QF012)+1 种基金the Fundamental Research Funds for the Central Universities(2018JC046)Young Scholars Program of Shandong University(2018WLJH25)。
文摘The application of antimony sulfide(Sb_(2)S_(3))has been limited mainly to the energy storage and photoelectric conversion fields.However,in this work,the application of Sb_(2)S_(3) is extended to the field of electromagnetic(EM)wave absorption for the first time.High-permittivity Sb_(2)S_(3) singlecrystal nanorods were prepared successfully and exhibited excellent performance,with a low reflection loss of -65.9 dB(13.0 GHz,3.8 mm)and an ultra-wide effective absorption bandwidth of 9.5 GHz(8.5-18.0 GHz,4.1 mm).After excluding the general absorption mechanisms,including conductive losses,interfacial polarization,and dipole polarization,the distinctive single-crystal volume polarization affected by shape anisotropy was proposed.This work not only meets the challenge of a single-component dielectric material design but also introduces a new concept for construction of efficient dielectric EM wave absorption material.
基金supported by the National Natural Science Foundation of China(Grant Nos.10832010,11002138 and 11102027)the Innovation Project of CAS(Grant No.KJCX2-YW-L05)
文摘Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB206900)
文摘In the present work, water and olive oil are taken as working fluids to study the influence of viscous heating on the entransy dissipation caused by heat transfer in two-fluid heat exchangers. The results show that the influence of viscous heating on the entransy loss associated with heat transfer can not be neglected for the liquids having large dynamic viscosity. The viscous heating effect maintains the heat transfer ability of the working fluids, relatively reduces the entransy loss in heat exchangers; the viscous heating effect relatively augments the entropy generation due to heat transfer and the available energy destruction in heat exchangers. For the working fluid having large dynamic viscosity, the increasing rates of the entransy and entropy generation contributed by the viscous heating are even larger than those contributed by heat transfer, when the mass flow rate of working fluid reaches a certain value under the fixed heat transfer area condition. Thus, the entransy loss rate decreases and the growth rate of entropy generation increases as the mass flow rate of the working fluid increases. Under the same other conditions, the heat transfer entransy loss rate and entropy generation rate per unit heat transfer rate obtained when the fluid having a smaller heat capacity rate is cold fluid are less than those obtained when the fluid having a smaller heat capacity rate is hot fluid.