Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electr...Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electronic conductivity.Firstly,this feature article reviews the recent studies on the development of new nonfluorinated ICMs with low cost and their macro/micro-structure control.In general,these new nonfluorinated ICMs have lower conductivity than commercial perfluorinated ones,due to their poor ion transport channels.Increasing ion exchange capacity(IEC)would create more continuous hydrophilic channels,thus enhancing the conductivity.However,high IEC also expands the overall hydrophilic domains,weakens the interaction between polymer chains,enhances the mobility of polymer chains,and eventually induces larger swelling.The micro-scale expansion and macro-scale swelling of the ICMs with high IEC could be controlled by limiting the mobility of polymer chains.Based on this strategy,some ef ficient techniques have been developed,including covalent crosslinking,semi-interpenatrating polymer network,and blending.Secondly,this review introduces the optimization of macro/microstructure of both perfluorinated and nonfluorinated ICMs to improve the performance.Macro-scale multilayer composite is an ef ficient way to enhance the mechanical strength and the dimensional stability of the ICMs,and could also decrease the content of per fluorosulfonic acid resin in the membrane,thereby reducing the cost of the perfluorinated ICMs.Long side chain,multiple functionalization,small molecule inducing micro-phase separation,electrospun nano fiber,and organic–inorganic hybrid could construct more ef ficient ion transport channels,improving the ion conductivity of ICMs.展开更多
A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model ...A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.展开更多
A new model of roving frame FA467, which uses four frequency inverters to replace the complex mechanical transmission, is discussed. A Neuron-PID is designed to reduce the effect of various parametric variations such ...A new model of roving frame FA467, which uses four frequency inverters to replace the complex mechanical transmission, is discussed. A Neuron-PID is designed to reduce the effect of various parametric variations such as load inertia. To ensure the constant spinning tension all over the spinning process, a feedforward controller using iterative learning control algorithm is desigend to avoid disturbances caused by changes of temperature, humidity and so on. The simulation result is shown to illustrate the effectiveness of the proposed algorithm, and now the roving frame FA467 has been developed successfully.展开更多
The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller th...The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller that is able to set the output value of the voltage and ensure the working within the maximum power point. In this paper, we propose the application of the robust sliding mode control technique to a DC-DC buck converter which is combined with a classical P & O (perturbation and observation) algorithm to enhance the solar system efficiency. Dynamic equations describing the boost converter are derived and a sliding mode controller for a buck converter is designed. It is shown that, this control approach gives good results in terms of robustness toward load and input voltage variations. The effectiveness of the proposed work is verified by the simulation results under PowerSim environment.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
基金Supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.21125628)the Major National Scienti fic Instrument Development Project(Grant No.21527812)+3 种基金the National Natural Science Foundation of China(Grant Nos.21406031 and 21476044)the State Key Laboratory of Fine Chemicals(KF1507)the Fundamental Research Funds for the Central Universities(Grant Nos.DUTPJ14RC(3)003)State Key Laboratory of fine chemicals(Panjin)project(Grant No.JH2014009)
文摘Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electronic conductivity.Firstly,this feature article reviews the recent studies on the development of new nonfluorinated ICMs with low cost and their macro/micro-structure control.In general,these new nonfluorinated ICMs have lower conductivity than commercial perfluorinated ones,due to their poor ion transport channels.Increasing ion exchange capacity(IEC)would create more continuous hydrophilic channels,thus enhancing the conductivity.However,high IEC also expands the overall hydrophilic domains,weakens the interaction between polymer chains,enhances the mobility of polymer chains,and eventually induces larger swelling.The micro-scale expansion and macro-scale swelling of the ICMs with high IEC could be controlled by limiting the mobility of polymer chains.Based on this strategy,some ef ficient techniques have been developed,including covalent crosslinking,semi-interpenatrating polymer network,and blending.Secondly,this review introduces the optimization of macro/microstructure of both perfluorinated and nonfluorinated ICMs to improve the performance.Macro-scale multilayer composite is an ef ficient way to enhance the mechanical strength and the dimensional stability of the ICMs,and could also decrease the content of per fluorosulfonic acid resin in the membrane,thereby reducing the cost of the perfluorinated ICMs.Long side chain,multiple functionalization,small molecule inducing micro-phase separation,electrospun nano fiber,and organic–inorganic hybrid could construct more ef ficient ion transport channels,improving the ion conductivity of ICMs.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 990630) and the State Major Basic Research Development Program (No. G20000263).
文摘A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.
文摘A new model of roving frame FA467, which uses four frequency inverters to replace the complex mechanical transmission, is discussed. A Neuron-PID is designed to reduce the effect of various parametric variations such as load inertia. To ensure the constant spinning tension all over the spinning process, a feedforward controller using iterative learning control algorithm is desigend to avoid disturbances caused by changes of temperature, humidity and so on. The simulation result is shown to illustrate the effectiveness of the proposed algorithm, and now the roving frame FA467 has been developed successfully.
文摘The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller that is able to set the output value of the voltage and ensure the working within the maximum power point. In this paper, we propose the application of the robust sliding mode control technique to a DC-DC buck converter which is combined with a classical P & O (perturbation and observation) algorithm to enhance the solar system efficiency. Dynamic equations describing the boost converter are derived and a sliding mode controller for a buck converter is designed. It is shown that, this control approach gives good results in terms of robustness toward load and input voltage variations. The effectiveness of the proposed work is verified by the simulation results under PowerSim environment.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.