The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarp...The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarpum, Parrotia sub-aequalis, Cercidiphyl um japonicum were measured in fields. The results showed that there were significant differences in photosynthetic capacity, intrinsic water use effi-ciency (WUEi ), the efficiency of primary conversion of light energy of PSⅡ and its potential activity, the quantum yield of PSⅡ electron transport, and the potential ca-pacity of heat dissipation among the six species. However, there was no significant difference in WUE. The highest values of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (gs) occurred in D. glabrum var. trichocarpum and the lowest in S. microcarpa. On the contrary, D. glabrum var. trichocarpum had the lowest WUE, intrinsic water use efficiency (WUEi ) and S. microcarpa had the highest. The results indicated that D. glabrum var. trichocarpum had higher photo-synthetic capacity and poorer WUE, while S. microcarpa had lower photosynthetic capacity and greater WUE. Furthermore, the mean values of maximal fluorescence (Fm), potential efficiency of primary conversion of light energy of PSⅡ (Fv/Fm),ΦPSⅡ, actual efficiency of primary conversion of light energy of PSⅡ (F′v/F′m) and non-photochemical quenching coefficient (NPQ) were the highest in S. micro-carpa, indicating that its PSⅡ had higher capacity of heat dissipation and could prevent photosynthetic apparatus from damage by excessive light energy. Correlation analysis showed that there were significant correlations among photosynthetic physi-ological parameters. However, the initial fluorescence (Fo) was not significantly cor-related with any other parameters. This study also revealed the extremely significant positive correlations between Pn and Tr, gs, apparent quantum yield (AQY), be-tween Tr and gs, between light saturation point (LSP) and AQY, between Fv/Fm and Fm, between ΦPSⅡ and photochemical quenching coefficient (qp), between Tr, gs and LSP, AQY. However, WUEi was significantly negatively correlated with Tr, gs, Pn, LSP and AQY.展开更多
The surface morphology of Zn O films at different annealing temperatures and the performance of polymer solar cells(PSCs) with Zn O as the electron transport layer are studied.The low temperature sol-gel processed Zn ...The surface morphology of Zn O films at different annealing temperatures and the performance of polymer solar cells(PSCs) with Zn O as the electron transport layer are studied.The low temperature sol-gel processed Zn O film has smoother surface than that in higher temperature,which results in the best photovoltaic performance with a power conversion efficiency(PCE) of 3.66% for P3HT:PC61BM based solar cell.With increasing annealing temperature,the photovoltaic performance first deceases and then increases.It could be ascribed to the synergy effects of interface area,the conductivity and surface energy of Zn O film and series resistance of devices.展开更多
基金Supported by Natural Science Foundation of Zhejiang Province(LY13C160007)Special Fund for Graduate Innovative Projects in Jiangxi Province(YC2014-B035)Lin’an Scientific and Technological Program of Zhejiang Province(201411)
文摘The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarpum, Parrotia sub-aequalis, Cercidiphyl um japonicum were measured in fields. The results showed that there were significant differences in photosynthetic capacity, intrinsic water use effi-ciency (WUEi ), the efficiency of primary conversion of light energy of PSⅡ and its potential activity, the quantum yield of PSⅡ electron transport, and the potential ca-pacity of heat dissipation among the six species. However, there was no significant difference in WUE. The highest values of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (gs) occurred in D. glabrum var. trichocarpum and the lowest in S. microcarpa. On the contrary, D. glabrum var. trichocarpum had the lowest WUE, intrinsic water use efficiency (WUEi ) and S. microcarpa had the highest. The results indicated that D. glabrum var. trichocarpum had higher photo-synthetic capacity and poorer WUE, while S. microcarpa had lower photosynthetic capacity and greater WUE. Furthermore, the mean values of maximal fluorescence (Fm), potential efficiency of primary conversion of light energy of PSⅡ (Fv/Fm),ΦPSⅡ, actual efficiency of primary conversion of light energy of PSⅡ (F′v/F′m) and non-photochemical quenching coefficient (NPQ) were the highest in S. micro-carpa, indicating that its PSⅡ had higher capacity of heat dissipation and could prevent photosynthetic apparatus from damage by excessive light energy. Correlation analysis showed that there were significant correlations among photosynthetic physi-ological parameters. However, the initial fluorescence (Fo) was not significantly cor-related with any other parameters. This study also revealed the extremely significant positive correlations between Pn and Tr, gs, apparent quantum yield (AQY), be-tween Tr and gs, between light saturation point (LSP) and AQY, between Fv/Fm and Fm, between ΦPSⅡ and photochemical quenching coefficient (qp), between Tr, gs and LSP, AQY. However, WUEi was significantly negatively correlated with Tr, gs, Pn, LSP and AQY.
基金supported by the Independent Innovation Foundation of Shandong University(No.2014YQ015)
文摘The surface morphology of Zn O films at different annealing temperatures and the performance of polymer solar cells(PSCs) with Zn O as the electron transport layer are studied.The low temperature sol-gel processed Zn O film has smoother surface than that in higher temperature,which results in the best photovoltaic performance with a power conversion efficiency(PCE) of 3.66% for P3HT:PC61BM based solar cell.With increasing annealing temperature,the photovoltaic performance first deceases and then increases.It could be ascribed to the synergy effects of interface area,the conductivity and surface energy of Zn O film and series resistance of devices.