We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater tha...We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations.展开更多
文摘We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations.