期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于一道CGMO题的探究
1
作者 张赟 李华 《中学数学研究》 2005年第9期49-50,共2页
首届女子数学奥林匹克(CGMO)第五题是:设p1,p2,…,pn(n≥2)是1,2,…,n的任意一个排列,求证:
关键词 CGMO 数学 竞赛题 第5题 中学 排列不等式 证明方法
下载PDF
A Rearrangement Inequality on Positive Tensor Products of Banach Lattices
2
作者 Wei-Kai Lai 《Journal of Mathematics and System Science》 2014年第6期387-390,共4页
In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a ... In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a random permutation. We now consider a sequence in lp with 1 〈 p 〈 ∞, and a sequence in a Banach lattice X. Instead of normal multiplication, we consider the tensor product of lp and X. We show that in Wittstock injective tensor product, lp iX, and Fremlin projective tensor product, lp FX, the rearrangement inequality still exists. 展开更多
关键词 Rearrangement inequality injective tensor product projective tensor product operators on Banach lattices Banachsequence space
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部