In order to analyze the influences of the different tool’s shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite ele...In order to analyze the influences of the different tool’s shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite element analysis (FEA) model of plane-strain orthogonal metal cutting process is constructed, and 16 simulation cases with 16 different types of tools, which cover 4 rake angles, -10°, 0°, 10°, 20°, and 4 friction coefficient values, 0, 0.1, 0.2, 0.3 in the same cutting condition (cutting depth and cutting speed) have been performed. Finally the simulation results are analyzed according to the variance analysis method (VAM) of orthogonal array designs (OADs), the relationships between the rake angle, tool-workpiece interface’s friction coefficient and their interact effect to the maximum temperature value and the temperature field of the chip are obtained. This result has some instructive meaning to analyze the causes of the cutting temperature and to control the maximum temperature value and the overall temperature field in the metal cutting process.展开更多
Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced ...Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU.展开更多
The operation principle of an arrayed waveguide grating(AWG) multiplexer is introduced and the 4×4 AWG with following design parameters is discussed in detail, such as the choice of wavelength, the neighboring ar...The operation principle of an arrayed waveguide grating(AWG) multiplexer is introduced and the 4×4 AWG with following design parameters is discussed in detail, such as the choice of wavelength, the neighboring arrayed waveguide distance ΔL, the channel frequency interval Δf, and the free spectral range. The structure of 4×4 AWG is designed and the result of stimulated test is also given. Analysis shows that the 4×4 AWG is characterized by a wide dynamic range, low crosstalk, better spectrum properties, and a compact structure.展开更多
This paper presents a macroblock-level (MB-level) decoding and deblocking method for supporting the flexible macroblock ordering (FMO) and arbitrary slice ordering (ASO) bit streams in H.264 decoder and its SOC/ASIC i...This paper presents a macroblock-level (MB-level) decoding and deblocking method for supporting the flexible macroblock ordering (FMO) and arbitrary slice ordering (ASO) bit streams in H.264 decoder and its SOC/ASIC implementation. By searching the slice containing the current macroblock in the bit stream and switching slices correctly, MBs can be decoded in the raster scan order, while the decoding process can immediately begin as long as the slice containing the current MB is available. This architectural modification enables the MB-level decoding and deblocking 3-stage pipeline, and saves about 20% of SDRAM bandwidth. Implementation results showed that the design achieves real-time decoding of 1080HD (1920×1088@30 fps) at a system clock of 166 MHz.展开更多
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ...A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles.展开更多
The authors consider the problem of estimating the ordered means of two normal distributions with unknown ordered variances. The authors discuss the estimation of two ordered means, individually, in terms of stochasti...The authors consider the problem of estimating the ordered means of two normal distributions with unknown ordered variances. The authors discuss the estimation of two ordered means, individually, in terms of stochastic domination and MSE (mean squared error). The authors show that in estimating the mean with larger variance, the usual estimator under order restriction on means can be improved upon. However, in estimating the mean with smaller variance, the usual estimator can't be improved upon even under MSE. The authors also discuss simultaneous estimation problem of two ordered means when unknown variances are ordered.展开更多
The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupli...The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearing and rotor dynamics is considered in the analysis. Based on the structured mesh, a new approach for mesh movement is proposed to update the mesh volume when the journal moves during the fluid dynamics simula- tion of an oil film. Existing dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The movement of the journal is obtained by solving the moving equations of the rotor-bearing system with the calculated film pressure as the boundary condition of the load. The data exchange between fluid dynamics and rotor dynamics is realized by data files. Results obtained from the CFD model were consistent with previous experimental results on misaligned journal bearings. Film pressure, oil film force, friction torque, misalignment moment and attitude angle were calculated and compared for mis- aligned and aligned journal bearings. The results indicate that bearing performances are greatly affected by misalignment which is caused by unbalanced excitation, and the CFD method based on the fluid-structure interaction (FSI) technique can effectively predict the transient flow field of a misaligned journal bearing in a rotor-bearing system.展开更多
The reliability and sensitivity of a strain gauge made from a nanoparticle monolayer intrinsically depend on electron tunneling between the adjacent nanoparticles, so that creating nanoscale interstitials with uniform...The reliability and sensitivity of a strain gauge made from a nanoparticle monolayer intrinsically depend on electron tunneling between the adjacent nanoparticles, so that creating nanoscale interstitials with uniform distribution and tuning the interparticle separation reversibly during cyclic mechanical stress are two vital issues for performance enhancement. In this work, one assembly technique is initialized to fabricate parallel nanoparticle strips by precisely tailoring the contact angle of a gold colloid on a substrate. The assembly of a nanoparticle monolayer with a close-packed pattern can be simultaneously switched on and off by independently varying the contact angle across a threshold value of 4.2~. This nanoparticle strip shows a reversible and reliable electrical response even if a mechanical strain as small as 0.027% is periodically supplied, implying well-controlled electron tunneling between the adjacent nanoparticles.展开更多
The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and ...The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and density functional theory (DFT) calculations. The results indicate the growth of a well-ordered C60 layer on the WO2/W(110) surface in which the molecules form a close-packed hexagonal structure with a unit cell parameter equal to 0.95 nm. The nucleation of the C60 layer starts at the substrate's inner step edges. Low-temperature STM of C60 molecules performed at 78 K demonstrates well-resolved molecular orbitals within individual molecules. In the C60 monolayer on the WO2/W(110) surface, the molecules are aligned in one direction due to intermolecular interaction, as shown by the ordered molecular orbitals of individual C60. STS data obtained from the C60 monolayer on the WO2/W(110) surface are in good agreement with DFT calculations.展开更多
文摘In order to analyze the influences of the different tool’s shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite element analysis (FEA) model of plane-strain orthogonal metal cutting process is constructed, and 16 simulation cases with 16 different types of tools, which cover 4 rake angles, -10°, 0°, 10°, 20°, and 4 friction coefficient values, 0, 0.1, 0.2, 0.3 in the same cutting condition (cutting depth and cutting speed) have been performed. Finally the simulation results are analyzed according to the variance analysis method (VAM) of orthogonal array designs (OADs), the relationships between the rake angle, tool-workpiece interface’s friction coefficient and their interact effect to the maximum temperature value and the temperature field of the chip are obtained. This result has some instructive meaning to analyze the causes of the cutting temperature and to control the maximum temperature value and the overall temperature field in the metal cutting process.
基金supported by National Natuvertexesral Science Foundation of China under Grant 61201233 61271262 and 61701043
文摘Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU.
文摘The operation principle of an arrayed waveguide grating(AWG) multiplexer is introduced and the 4×4 AWG with following design parameters is discussed in detail, such as the choice of wavelength, the neighboring arrayed waveguide distance ΔL, the channel frequency interval Δf, and the free spectral range. The structure of 4×4 AWG is designed and the result of stimulated test is also given. Analysis shows that the 4×4 AWG is characterized by a wide dynamic range, low crosstalk, better spectrum properties, and a compact structure.
基金Project (No. 2002AA1Z1190) supported by the National Hi-Tech Research and Development Program (863) of China
文摘This paper presents a macroblock-level (MB-level) decoding and deblocking method for supporting the flexible macroblock ordering (FMO) and arbitrary slice ordering (ASO) bit streams in H.264 decoder and its SOC/ASIC implementation. By searching the slice containing the current macroblock in the bit stream and switching slices correctly, MBs can be decoded in the raster scan order, while the decoding process can immediately begin as long as the slice containing the current MB is available. This architectural modification enables the MB-level decoding and deblocking 3-stage pipeline, and saves about 20% of SDRAM bandwidth. Implementation results showed that the design achieves real-time decoding of 1080HD (1920×1088@30 fps) at a system clock of 166 MHz.
基金National Natural Science Foundation ofChina( No.90 2 0 5 0 0 6) and Shanghai Rising Star Program( No.0 2 QG14 0 3 1)
文摘A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles.
文摘The authors consider the problem of estimating the ordered means of two normal distributions with unknown ordered variances. The authors discuss the estimation of two ordered means, individually, in terms of stochastic domination and MSE (mean squared error). The authors show that in estimating the mean with larger variance, the usual estimator under order restriction on means can be improved upon. However, in estimating the mean with smaller variance, the usual estimator can't be improved upon even under MSE. The authors also discuss simultaneous estimation problem of two ordered means when unknown variances are ordered.
基金supported by the National High-Tech R&D (863) Program of China (No. 2009AA04Z413)the Natural Science Foundation of Zhejiang Province (No. Y1110109),China
文摘The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearing and rotor dynamics is considered in the analysis. Based on the structured mesh, a new approach for mesh movement is proposed to update the mesh volume when the journal moves during the fluid dynamics simula- tion of an oil film. Existing dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The movement of the journal is obtained by solving the moving equations of the rotor-bearing system with the calculated film pressure as the boundary condition of the load. The data exchange between fluid dynamics and rotor dynamics is realized by data files. Results obtained from the CFD model were consistent with previous experimental results on misaligned journal bearings. Film pressure, oil film force, friction torque, misalignment moment and attitude angle were calculated and compared for mis- aligned and aligned journal bearings. The results indicate that bearing performances are greatly affected by misalignment which is caused by unbalanced excitation, and the CFD method based on the fluid-structure interaction (FSI) technique can effectively predict the transient flow field of a misaligned journal bearing in a rotor-bearing system.
基金Acknowledgements This work was partially supported by the National Science Foundation of Hubei Province (Grant No.2011CDB295), Innovation Funding of HUST (No. 2012TS031), Spedalized Research Fund for the Doctoral Program of Higher Education (No. 20130142120089), and the National Science Foundation of China (No. 51371084). We acknowledge the assistance from the staff in the Analytic and Testing Center of HUST.
文摘The reliability and sensitivity of a strain gauge made from a nanoparticle monolayer intrinsically depend on electron tunneling between the adjacent nanoparticles, so that creating nanoscale interstitials with uniform distribution and tuning the interparticle separation reversibly during cyclic mechanical stress are two vital issues for performance enhancement. In this work, one assembly technique is initialized to fabricate parallel nanoparticle strips by precisely tailoring the contact angle of a gold colloid on a substrate. The assembly of a nanoparticle monolayer with a close-packed pattern can be simultaneously switched on and off by independently varying the contact angle across a threshold value of 4.2~. This nanoparticle strip shows a reversible and reliable electrical response even if a mechanical strain as small as 0.027% is periodically supplied, implying well-controlled electron tunneling between the adjacent nanoparticles.
文摘The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and density functional theory (DFT) calculations. The results indicate the growth of a well-ordered C60 layer on the WO2/W(110) surface in which the molecules form a close-packed hexagonal structure with a unit cell parameter equal to 0.95 nm. The nucleation of the C60 layer starts at the substrate's inner step edges. Low-temperature STM of C60 molecules performed at 78 K demonstrates well-resolved molecular orbitals within individual molecules. In the C60 monolayer on the WO2/W(110) surface, the molecules are aligned in one direction due to intermolecular interaction, as shown by the ordered molecular orbitals of individual C60. STS data obtained from the C60 monolayer on the WO2/W(110) surface are in good agreement with DFT calculations.