The computational grid provides a promising platform for the deployment of various high-performance computing applications. A grid system consists of heterogeneous resource domains, while the computational tasks of fi...The computational grid provides a promising platform for the deployment of various high-performance computing applications. A grid system consists of heterogeneous resource domains, while the computational tasks of finite element analysis may differ in demand of computing power. The cost-effective utilization of resources in the grid can be obtained through scheduling tasks to optimal resource domains. Firstly, a cost-effective scheduling strategy is presented for finite element applications. Secondly, aiming at the conjugate gradient solver stemming from finite element analysis, a performance evaluation formula is presented for determining optimal resouree domains, which is derived from phase parallel model and takes the heterogeneous characteristic of resource domains into account. Finally, experimental results show that the presented formula delivers a good estimation of the actual execution time, and indicate that the presented formula can be used to determine optimal resource domains in the grid environment.展开更多
文摘The computational grid provides a promising platform for the deployment of various high-performance computing applications. A grid system consists of heterogeneous resource domains, while the computational tasks of finite element analysis may differ in demand of computing power. The cost-effective utilization of resources in the grid can be obtained through scheduling tasks to optimal resource domains. Firstly, a cost-effective scheduling strategy is presented for finite element applications. Secondly, aiming at the conjugate gradient solver stemming from finite element analysis, a performance evaluation formula is presented for determining optimal resouree domains, which is derived from phase parallel model and takes the heterogeneous characteristic of resource domains into account. Finally, experimental results show that the presented formula delivers a good estimation of the actual execution time, and indicate that the presented formula can be used to determine optimal resource domains in the grid environment.