When the motion of a particle is constrained, an excess term exists using hermitian form of Cartesian momentum pi (i = 1, 2, 3) in usual kinetic energy (1/2μ)∑p2i, and the correct kinetic energy turns out to be (1/2...When the motion of a particle is constrained, an excess term exists using hermitian form of Cartesian momentum pi (i = 1, 2, 3) in usual kinetic energy (1/2μ)∑p2i, and the correct kinetic energy turns out to be (1/2μ) ∑(1/ fi)pifipi, where the fi are dummy factors in classical mechanics and nontrivial in quantum mechanics. In this paper the explicit form of the dummy functions fi is given for a charged rigid planar rotator in the uniform magnetic field.展开更多
文摘When the motion of a particle is constrained, an excess term exists using hermitian form of Cartesian momentum pi (i = 1, 2, 3) in usual kinetic energy (1/2μ)∑p2i, and the correct kinetic energy turns out to be (1/2μ) ∑(1/ fi)pifipi, where the fi are dummy factors in classical mechanics and nontrivial in quantum mechanics. In this paper the explicit form of the dummy functions fi is given for a charged rigid planar rotator in the uniform magnetic field.