Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has...Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has fine microstructure whereas that prepared by solid-solid doping has large grain size.Y2O3-doped Mo emitter with small grain size prepared by liquid-liquid doping exhibits high emission property,i.e.,the secondary electron yield can get to 5.24,about 1.7 times that prepared by solid-solid doping.Moreover,Y2O3-doped Mo emitter exhibits the best emission performance among La2O3-doped Mo,Y2O3-doped Mo, Gd2O3-doped Mo and Ce2O3-doped Mo emitters due to the largest penetration depth of primary electrons and escape depth of secondary electrons in this emitter.The secondary emission of the emitter with small grain size can be explained by reflection emission model and transmission emission model,whereas only transmission emission exists in the emitter with large grain size.展开更多
Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical s...Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experi- mental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor- based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.展开更多
基金Projects(2006AA03Z524,2008AA031001)supported by the National Hi-tech Research and Development Program of ChinaProject(50801001)supported by the National Natural Foundation of China
文摘Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has fine microstructure whereas that prepared by solid-solid doping has large grain size.Y2O3-doped Mo emitter with small grain size prepared by liquid-liquid doping exhibits high emission property,i.e.,the secondary electron yield can get to 5.24,about 1.7 times that prepared by solid-solid doping.Moreover,Y2O3-doped Mo emitter exhibits the best emission performance among La2O3-doped Mo,Y2O3-doped Mo, Gd2O3-doped Mo and Ce2O3-doped Mo emitters due to the largest penetration depth of primary electrons and escape depth of secondary electrons in this emitter.The secondary emission of the emitter with small grain size can be explained by reflection emission model and transmission emission model,whereas only transmission emission exists in the emitter with large grain size.
文摘Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experi- mental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor- based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.