Diesel particulate filter (DPF) is an important factor which influences the sound from exhaust system of an engine. In order to understand the propagation law of sound wave and predict the insertion loss in DPF, based...Diesel particulate filter (DPF) is an important factor which influences the sound from exhaust system of an engine. In order to understand the propagation law of sound wave and predict the insertion loss in DPF, based on the general aero-dynamic equations and Darcy′s law, an acoustic property calculation model of DPF is constructed. Propagation and attenuation characteristics of the forward and backward propagating acoustic waves in the close and open pipe of the filter are investigated. The theoretical model is combined with experiment to investigate sound attenuation property of DPF. The insertion loss obtained from the experiment is compared with that computed for a DPF. The results from the experiment and theoretical calculation agree well.展开更多
基金Supported by Natural Science Foundation of Tianjin (05YFJMJC10700).
文摘Diesel particulate filter (DPF) is an important factor which influences the sound from exhaust system of an engine. In order to understand the propagation law of sound wave and predict the insertion loss in DPF, based on the general aero-dynamic equations and Darcy′s law, an acoustic property calculation model of DPF is constructed. Propagation and attenuation characteristics of the forward and backward propagating acoustic waves in the close and open pipe of the filter are investigated. The theoretical model is combined with experiment to investigate sound attenuation property of DPF. The insertion loss obtained from the experiment is compared with that computed for a DPF. The results from the experiment and theoretical calculation agree well.