The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the ...The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.展开更多
There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fer...There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fertilizers and pesticides. The aim of this study is to estimate the sources and the levels of metals in soils of the ULB (Upper Litani Basin) that receive all mentioned factors. Soil samples were collected during the dry season from 24 sites along the Litani River flow, and 12 sites irrigated by Canal 900 withdrawn from the Qaraoun Dam along river. Metals in soils were analyzed using EDXRF (energy dispersive X-ray fluorescence) technique. Data revealed the following average levels of some heavy metals in soils with high percentage of samples exceeding the international guidelines: Mn (593 mg/kg)--67%, Ni (98 mg/kg)--96%, Cr (143 mg/kg)--92%, Hg (3.6 mg/kg)--38%, Cd (2.8 mg/kg)---25% and As (17.6 mg/kg)-84%. In canal soils: Mn (683 mg/kg)-86%, Ni (156 mg/kg)-100%, Cr (203 mg/kg) -100%, Hg (2.3 mg/kg)-25%, Cd (3.3 mg/kg)-25% and As (19.5 mg/kg)-92%. The prime source of toxic metals was due to the agricultural runoffs, beside sewage and domestic waste water discharge. Thus, the prominent findings of high levels of toxic metals (Cr, Cd, Hg and As) in soils and consequent probability in plants might induce a major health threat to consumers,展开更多
Based on the statistics from the China Statistical Yearbook (2000-2009) on environment and methods recommended by the IPCC, the amounts of greenhouse gas (GHG) emissions from domestic and industrial sewage treatme...Based on the statistics from the China Statistical Yearbook (2000-2009) on environment and methods recommended by the IPCC, the amounts of greenhouse gas (GHG) emissions from domestic and industrial sewage treatment in China are estimated for the period of 2003-2009. CO2 emissions per capita from sewage treatment plants are also analyzed. The results show that the GHG emissions from sewage treatment plants increased steadily from 2003 to 2009; N20 emissions from domestic sewage are the major source of the total GHG emissions from domestic sewage; CH4 emissions from domestic sewage increase with the greatest speed; CH4 emissions from paper and pulp industry are the major source of industrial sewage emissions; CO2 emissions per capita increase constantly from 2003 to 2009.展开更多
基金supported by the National Natural Science Foundation of China (41175137)the Climate Change Working Program of MEP in 2015 (CC(2015)-9-3)the Climate Change Project of Beijing in 2014 (ZHCKT4)
文摘The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.
文摘There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fertilizers and pesticides. The aim of this study is to estimate the sources and the levels of metals in soils of the ULB (Upper Litani Basin) that receive all mentioned factors. Soil samples were collected during the dry season from 24 sites along the Litani River flow, and 12 sites irrigated by Canal 900 withdrawn from the Qaraoun Dam along river. Metals in soils were analyzed using EDXRF (energy dispersive X-ray fluorescence) technique. Data revealed the following average levels of some heavy metals in soils with high percentage of samples exceeding the international guidelines: Mn (593 mg/kg)--67%, Ni (98 mg/kg)--96%, Cr (143 mg/kg)--92%, Hg (3.6 mg/kg)--38%, Cd (2.8 mg/kg)---25% and As (17.6 mg/kg)-84%. In canal soils: Mn (683 mg/kg)-86%, Ni (156 mg/kg)-100%, Cr (203 mg/kg) -100%, Hg (2.3 mg/kg)-25%, Cd (3.3 mg/kg)-25% and As (19.5 mg/kg)-92%. The prime source of toxic metals was due to the agricultural runoffs, beside sewage and domestic waste water discharge. Thus, the prominent findings of high levels of toxic metals (Cr, Cd, Hg and As) in soils and consequent probability in plants might induce a major health threat to consumers,
基金supported by the GEF/UNDP Second National Communication on Climate Change of China--China’s inventory of GHG emissions from wastewater/sewage treatment subproject
文摘Based on the statistics from the China Statistical Yearbook (2000-2009) on environment and methods recommended by the IPCC, the amounts of greenhouse gas (GHG) emissions from domestic and industrial sewage treatment in China are estimated for the period of 2003-2009. CO2 emissions per capita from sewage treatment plants are also analyzed. The results show that the GHG emissions from sewage treatment plants increased steadily from 2003 to 2009; N20 emissions from domestic sewage are the major source of the total GHG emissions from domestic sewage; CH4 emissions from domestic sewage increase with the greatest speed; CH4 emissions from paper and pulp industry are the major source of industrial sewage emissions; CO2 emissions per capita increase constantly from 2003 to 2009.