In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town ...In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town of Zhenjiang. The specific research object is the runoff of the outfall of rainwater-sewage confluence in the area. On the basis of detecting and analyzing the water yield and water quality of the runoff of rainwater-sewage confluence a combined technology which contains four independent continuous processes for lowering pollution load was developed and system equipment was established and put into operation. The processing effects of the project were monitored and analyzed.The results show that the pollution control project of outfall runoff is efficient which decreases the pollution load including chemical oxygen demand COD total phosphorus TP suspended solids SS and ammonia-nitrogen NH3-N .As a result the water environment of the ancient canal is protected.展开更多
To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rain...To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rainfall events at outfalls of highway in Shanghai from June to September 2007. Field samples were analyzed to determine the concentrations of TSS and particle-bound heavy metals, such as Zn, Pb, and Cu. Results show that the wash off behavior of TSS under varying runoff rate condition can be explained by different antecedent dry weather period (ADWP). Contribution of fine fraction (<45 μm) to TSS was generally higher than that of coarse fraction (>45 μm). When the runoff flow increased obviously, a significant contribution of the coarse fraction was observed for a certain rainfall events with long antecedent dry weather condition. The changes of total metals concentration and particle-bound metal concentrations were strongly dependent on the TSS variation. TSS was generally well correlated with most particulate-bound heavy metals. Of the heavy metals, the concentration of Zn was found considerably high and that of Pb was significantly low at North Zhongshan 2 Road, in Shanghai, China, but they are still within the range reported in the literature. Fluctuation of heavy metal contents in the coarse fraction during a first flush period was more significant compared with that in the fine fraction. The results will assist in the development of effective control strategies to minimize heavy metals and solids in highway runoff.展开更多
In this study, discharge at the outlet of Xijiang River, the biggest sub-basin of the Zhujiang River, was simulated and projected from 1961 to 2099 using the hydrological model HBV-D. The model uses precipitation and ...In this study, discharge at the outlet of Xijiang River, the biggest sub-basin of the Zhujiang River, was simulated and projected from 1961 to 2099 using the hydrological model HBV-D. The model uses precipitation and temperature data from CISRO/MK3 5, MPI/ECHAM5, and NCAR/CCSM3 under three greenhouse gas emission scenarios (SRES A2, A1B, B1). The results in water resources and flood frequency suggest that annual precipitation and annual runoff would increase after 2050 relative to the reference period of 1961-1990. In addition, increasing trends have been projected in area averaged monthly precipitation and runoff from May to October, while decreasing trends in those from December to February. More often and larger floods would occur in future. Potential increase in runoff during the low-flow season could ease the pressure of water demand until 2030, but the increase in runoff in the high-flow season, with more often and larger floods, more pressure on flood control after 2050 is expected.展开更多
A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a sm...A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a small agricultural watershed in Nanjing-Zhenjiang hilly regions to observe the farmland surface runoff and N loss characteristics under the different layouts of field ditch. As the layout density of field ditch increased, the drainage effect was improved, the timing of the runoff peak was advanced, and also the peak flow was augmented. At the same time, both the concentration and accumulated transfer flux of total nitrogen (TN) were improved, and thereinto the accumulated transfer fluxes of TN under D3, D2 and D1 treatments were increased by 1.46, 1.34 and 1.16 times, respectively, than that under CK treatment. However, the accumulated transfer fluxes of nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH4+-N) under D3, D2 and D1 treatments were reduced by 33.9%, 21.4% and 8.6%, and 35.8%, 24.7% and 12.2%, respectively, compared with those under CK treatment. Under CK treatment, the NO3-N and NH4+-N concentrations were more sensitive to rainfall intensity than the TN concentration. There were significant linear relationships between the transfer fluxes of TN, NO3-N and NH^-N and the runoff flux, with the correlation coefficients of 0.942, 0.899 and 0.912, respectively. In addition, this correlation was also influenced by the layout density of field ditch. Therefore, the environmental effect should be taken into account when designing and constructing field ditches. Especially in the regions of severe fertilizer loss, the approaches of properly increasing the drainage area and decreasing the layout density of field ditch could be adopted under the precondition of avoiding crops from waterlogging.展开更多
基金The National Science and Technology Major Project of China(No.2008ZX07317-001)
文摘In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town of Zhenjiang. The specific research object is the runoff of the outfall of rainwater-sewage confluence in the area. On the basis of detecting and analyzing the water yield and water quality of the runoff of rainwater-sewage confluence a combined technology which contains four independent continuous processes for lowering pollution load was developed and system equipment was established and put into operation. The processing effects of the project were monitored and analyzed.The results show that the pollution control project of outfall runoff is efficient which decreases the pollution load including chemical oxygen demand COD total phosphorus TP suspended solids SS and ammonia-nitrogen NH3-N .As a result the water environment of the ancient canal is protected.
基金Project supported by the National Key Technology R&D Program of China (No. 2006BAK13B04)the Expo Shanghai Sci-Tech Program of Science and Technology Commission of Shanghai (No.06dz05808)the Natural Science Foundation of Jiangxi Province(No. 2007GZH839), China
文摘To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rainfall events at outfalls of highway in Shanghai from June to September 2007. Field samples were analyzed to determine the concentrations of TSS and particle-bound heavy metals, such as Zn, Pb, and Cu. Results show that the wash off behavior of TSS under varying runoff rate condition can be explained by different antecedent dry weather period (ADWP). Contribution of fine fraction (<45 μm) to TSS was generally higher than that of coarse fraction (>45 μm). When the runoff flow increased obviously, a significant contribution of the coarse fraction was observed for a certain rainfall events with long antecedent dry weather condition. The changes of total metals concentration and particle-bound metal concentrations were strongly dependent on the TSS variation. TSS was generally well correlated with most particulate-bound heavy metals. Of the heavy metals, the concentration of Zn was found considerably high and that of Pb was significantly low at North Zhongshan 2 Road, in Shanghai, China, but they are still within the range reported in the literature. Fluctuation of heavy metal contents in the coarse fraction during a first flush period was more significant compared with that in the fine fraction. The results will assist in the development of effective control strategies to minimize heavy metals and solids in highway runoff.
基金supported by the National Basic Research Program of China (No. 2010CB428401)
文摘In this study, discharge at the outlet of Xijiang River, the biggest sub-basin of the Zhujiang River, was simulated and projected from 1961 to 2099 using the hydrological model HBV-D. The model uses precipitation and temperature data from CISRO/MK3 5, MPI/ECHAM5, and NCAR/CCSM3 under three greenhouse gas emission scenarios (SRES A2, A1B, B1). The results in water resources and flood frequency suggest that annual precipitation and annual runoff would increase after 2050 relative to the reference period of 1961-1990. In addition, increasing trends have been projected in area averaged monthly precipitation and runoff from May to October, while decreasing trends in those from December to February. More often and larger floods would occur in future. Potential increase in runoff during the low-flow season could ease the pressure of water demand until 2030, but the increase in runoff in the high-flow season, with more often and larger floods, more pressure on flood control after 2050 is expected.
基金Supported by the National Natural Science Foundation of China(No.50839002)the Doctoral Fund of Ministry of Education of China(No.200802940006)the Public Research Special Fund of Ministry of Agriculture of China(No.200903001-05)
文摘A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a small agricultural watershed in Nanjing-Zhenjiang hilly regions to observe the farmland surface runoff and N loss characteristics under the different layouts of field ditch. As the layout density of field ditch increased, the drainage effect was improved, the timing of the runoff peak was advanced, and also the peak flow was augmented. At the same time, both the concentration and accumulated transfer flux of total nitrogen (TN) were improved, and thereinto the accumulated transfer fluxes of TN under D3, D2 and D1 treatments were increased by 1.46, 1.34 and 1.16 times, respectively, than that under CK treatment. However, the accumulated transfer fluxes of nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH4+-N) under D3, D2 and D1 treatments were reduced by 33.9%, 21.4% and 8.6%, and 35.8%, 24.7% and 12.2%, respectively, compared with those under CK treatment. Under CK treatment, the NO3-N and NH4+-N concentrations were more sensitive to rainfall intensity than the TN concentration. There were significant linear relationships between the transfer fluxes of TN, NO3-N and NH^-N and the runoff flux, with the correlation coefficients of 0.942, 0.899 and 0.912, respectively. In addition, this correlation was also influenced by the layout density of field ditch. Therefore, the environmental effect should be taken into account when designing and constructing field ditches. Especially in the regions of severe fertilizer loss, the approaches of properly increasing the drainage area and decreasing the layout density of field ditch could be adopted under the precondition of avoiding crops from waterlogging.