Hydropower is a clean,renewable,and environmentally friendly source of energy.It produces 3930(TW·h)·a–1,and yields 16% of the world's generated electricity and about 78% of renewable electricity genera...Hydropower is a clean,renewable,and environmentally friendly source of energy.It produces 3930(TW·h)·a–1,and yields 16% of the world's generated electricity and about 78% of renewable electricity generation(in 2015).Hydropower and climate change show a double relationship.On the one hand,as an important renewable energy resource,hydropower contributes significantly to the avoidance of greenhouse gas(GHG) emissions and to the mitigation of global warming.On the other hand,climate change is likely to alter river discharge,impacting water availability and hydropower generation.Hydropower contributes significantly to the reduction of GHG emissions and to energy supply security.Compared with conventional coal power plants,hydropower prevents the emission of about 3 GT CO2 per year,which represents about 9% of global annual CO2 emissions.Hydropower projects may also have an enabling role beyond the electricity sector,as a financing instrument for multipurpose reservoirs and as an adaptive measure regarding the impacts of climate change on water resources,because regulated basins with large reservoir capacities are more resilient to water resource changes,less vulnerable to climate change,and act as a storage buffer against climate change.At the global level,the overall impact of climate change on existing hydropower generation may be expected to be small,or even slightly positive.However,there is the possibility of substantial variations across regions and even within countries.In conclusion,the general verdict on hydropower is that it is a cheap and mature technology that contributes significantly to climate change mitigation,and could play an important role in the climate change adaptation of water resource availability.However,careful attention is necessary to mitigate the substantial environmental and social costs.Roughly more than a terawatt of capacity could be added in upcoming decades.展开更多
The Chinese government has set ambitious targets to reduce the per unit of GDP by 40% ~45% during 2005 to 2020 and achieve the intensity peaking of carbon emissions of CO2 emissions a- round 2030. The T21 national dev...The Chinese government has set ambitious targets to reduce the per unit of GDP by 40% ~45% during 2005 to 2020 and achieve the intensity peaking of carbon emissions of CO2 emissions a- round 2030. The T21 national development model for China was developed for the purpose of analy- zing the effects of long-term national policies that relate to carbon emissions, loss of farm land, water shortage, energy security, food security, and their contributions to this reduction target. The focus of this paper is on the policies that have substantial impacts on carbon emissions from fossil fuels. Four scenarios are developed with the model to simulate future carbon emissions : 1 ) the BAU ( busi- ness as usual) scenario, showing the likely results of continuing current policies; 2 ) the TECH (technology) scenario showing the effects of more investment in renewable energy sources and promoting more energy efficient technologies; 3 ) the BEHAVIOR scenario, showing how government tax and price policies, together with public education programs, would instigate behaviour changes towards more sustainable living; and 4 ) the TECH&BEHA scenario, which shows the results of combining scenarios 2 and 3. The simulation results show that CO2 emissions reduction targets of China are achievable, but also require great effort to put in.展开更多
Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is larg...Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.展开更多
The demand for energy, water and food will continuously increase, as the prediction states that 2.5 billion people will be added to the world population by 2050, representing not only an increase in the consumption bu...The demand for energy, water and food will continuously increase, as the prediction states that 2.5 billion people will be added to the world population by 2050, representing not only an increase in the consumption but also more waste production, greenhouse gas (GHG) emissions and depletion of natural resources. Taking into account that renewable sources of energy can help to overcome these challenges and diversify the energy matrix in the countries, this paper aims at analyzing the biogas potential in Brazil and the United States, especially in the livestock sector, and its benefits in the environmental, social and economic aspects. Both countries are among the top five countries globally in terms of water availability, energy consumption and food production. Until 2050, the world consumption of meat will have a significant increase: 206% of poultry meat, 56% of pork meat and 47% of beef meat, augmenting the need for sustainable management of waste and manure. This scenario can become a sustainable opportunity for biogas implementation, which provides multiple economic, environmental and social benefits for farmers, businesses and communities, including production of electrical, thermal and vehicular energy, production of high-quality biofertilizer, reduction of ground and surface water pollution and reduction of GHG emissions, and foments new income for the farmers, among others. A new concept is presented in this article to make biogas systems feasible, i.e., biogas condominiums, as small and medium-scale farms by themselves usually would not be able to afford the investments. This arrangement can bring benefits for the whole biogas supply chain that includes farmers, agroindustry, providers and local community.展开更多
Annual discharge and annual suspended sediment loads of Beipei Hydrological Station of the Jialing River catchment were analyzed to describe the trend of Jialing River over the last five decades (1956-2006). These loa...Annual discharge and annual suspended sediment loads of Beipei Hydrological Station of the Jialing River catchment were analyzed to describe the trend of Jialing River over the last five decades (1956-2006). These loads were also analyzed to ascertain the influential factors associated with its variation with the help of Kendall's Tau-b correlation analysis and regression analysis. The results indicated that the Jialing River annual discharge showed no significant trend at >95% confidence level while the annual sediment load appeared to have a significant decrease trend over the last 50 years. A decrease in the annual sediment load was particularly apparent after the year 1985, at which a substantial shift in the sediment level occurred. This shift is attributed to the construction of numerous dams in 1980s. However, after the year of 1985, two periodical stages (1986-1991 and 1992-2006) with distinct sediment load and sediment-runoff ratio were identified. The period 1992-2006 is characterised by low sediment load, which is most probably due to the impact of large scale of soil and water conservation, which took place at the end of the 1980s. Last, models describing the relationship between the discharge and the sediment load, discharge and sediment-runoff ratio as well as between the sediment load and sediment-runoff ratio were constructed.展开更多
文摘Hydropower is a clean,renewable,and environmentally friendly source of energy.It produces 3930(TW·h)·a–1,and yields 16% of the world's generated electricity and about 78% of renewable electricity generation(in 2015).Hydropower and climate change show a double relationship.On the one hand,as an important renewable energy resource,hydropower contributes significantly to the avoidance of greenhouse gas(GHG) emissions and to the mitigation of global warming.On the other hand,climate change is likely to alter river discharge,impacting water availability and hydropower generation.Hydropower contributes significantly to the reduction of GHG emissions and to energy supply security.Compared with conventional coal power plants,hydropower prevents the emission of about 3 GT CO2 per year,which represents about 9% of global annual CO2 emissions.Hydropower projects may also have an enabling role beyond the electricity sector,as a financing instrument for multipurpose reservoirs and as an adaptive measure regarding the impacts of climate change on water resources,because regulated basins with large reservoir capacities are more resilient to water resource changes,less vulnerable to climate change,and act as a storage buffer against climate change.At the global level,the overall impact of climate change on existing hydropower generation may be expected to be small,or even slightly positive.However,there is the possibility of substantial variations across regions and even within countries.In conclusion,the general verdict on hydropower is that it is a cheap and mature technology that contributes significantly to climate change mitigation,and could play an important role in the climate change adaptation of water resource availability.However,careful attention is necessary to mitigate the substantial environmental and social costs.Roughly more than a terawatt of capacity could be added in upcoming decades.
基金Supported by the National Science&Technology Pillar Program(No.2012BAC20B09)
文摘The Chinese government has set ambitious targets to reduce the per unit of GDP by 40% ~45% during 2005 to 2020 and achieve the intensity peaking of carbon emissions of CO2 emissions a- round 2030. The T21 national development model for China was developed for the purpose of analy- zing the effects of long-term national policies that relate to carbon emissions, loss of farm land, water shortage, energy security, food security, and their contributions to this reduction target. The focus of this paper is on the policies that have substantial impacts on carbon emissions from fossil fuels. Four scenarios are developed with the model to simulate future carbon emissions : 1 ) the BAU ( busi- ness as usual) scenario, showing the likely results of continuing current policies; 2 ) the TECH (technology) scenario showing the effects of more investment in renewable energy sources and promoting more energy efficient technologies; 3 ) the BEHAVIOR scenario, showing how government tax and price policies, together with public education programs, would instigate behaviour changes towards more sustainable living; and 4 ) the TECH&BEHA scenario, which shows the results of combining scenarios 2 and 3. The simulation results show that CO2 emissions reduction targets of China are achievable, but also require great effort to put in.
文摘Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.
文摘The demand for energy, water and food will continuously increase, as the prediction states that 2.5 billion people will be added to the world population by 2050, representing not only an increase in the consumption but also more waste production, greenhouse gas (GHG) emissions and depletion of natural resources. Taking into account that renewable sources of energy can help to overcome these challenges and diversify the energy matrix in the countries, this paper aims at analyzing the biogas potential in Brazil and the United States, especially in the livestock sector, and its benefits in the environmental, social and economic aspects. Both countries are among the top five countries globally in terms of water availability, energy consumption and food production. Until 2050, the world consumption of meat will have a significant increase: 206% of poultry meat, 56% of pork meat and 47% of beef meat, augmenting the need for sustainable management of waste and manure. This scenario can become a sustainable opportunity for biogas implementation, which provides multiple economic, environmental and social benefits for farmers, businesses and communities, including production of electrical, thermal and vehicular energy, production of high-quality biofertilizer, reduction of ground and surface water pollution and reduction of GHG emissions, and foments new income for the farmers, among others. A new concept is presented in this article to make biogas systems feasible, i.e., biogas condominiums, as small and medium-scale farms by themselves usually would not be able to afford the investments. This arrangement can bring benefits for the whole biogas supply chain that includes farmers, agroindustry, providers and local community.
基金supported by the National Natural Science Foundation (40901135)973 program (2007CB40720301)+1 种基金National Key Technology R&D Program (2008BAD98B02)the open fund of Institute of Changjiang River Scientific Research program (YWF0716/TB01)
文摘Annual discharge and annual suspended sediment loads of Beipei Hydrological Station of the Jialing River catchment were analyzed to describe the trend of Jialing River over the last five decades (1956-2006). These loads were also analyzed to ascertain the influential factors associated with its variation with the help of Kendall's Tau-b correlation analysis and regression analysis. The results indicated that the Jialing River annual discharge showed no significant trend at >95% confidence level while the annual sediment load appeared to have a significant decrease trend over the last 50 years. A decrease in the annual sediment load was particularly apparent after the year 1985, at which a substantial shift in the sediment level occurred. This shift is attributed to the construction of numerous dams in 1980s. However, after the year of 1985, two periodical stages (1986-1991 and 1992-2006) with distinct sediment load and sediment-runoff ratio were identified. The period 1992-2006 is characterised by low sediment load, which is most probably due to the impact of large scale of soil and water conservation, which took place at the end of the 1980s. Last, models describing the relationship between the discharge and the sediment load, discharge and sediment-runoff ratio as well as between the sediment load and sediment-runoff ratio were constructed.