With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with th...With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.展开更多
The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the ...The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.展开更多
The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH4-, NO3-...The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH4-, NO3-, NO2- as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 ~mol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 pmolM2 S1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I dean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.展开更多
The research performed statistical analysis on 186 data concerning the amount of discharged industrial wastewater, the amount of oxygen demand of industrial wastewater, the amount of ammonia and nitrogen discharged fr...The research performed statistical analysis on 186 data concerning the amount of discharged industrial wastewater, the amount of oxygen demand of industrial wastewater, the amount of ammonia and nitrogen discharged from industries, the amount of urban discharged domestic sewage, the amount of daily life chemical oxygen demand, and the amount of domestic ammonia and nitrogen to explore source of pollutants from wastewater and guarantee urban water quality.Factor analysis was then performed with SPSS according to discharge quantity of pollutants. The results should that the major pollutants are from domestic sewage it is expected scientific suggestions be proposed on water quality in our country.展开更多
There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fer...There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fertilizers and pesticides. The aim of this study is to estimate the sources and the levels of metals in soils of the ULB (Upper Litani Basin) that receive all mentioned factors. Soil samples were collected during the dry season from 24 sites along the Litani River flow, and 12 sites irrigated by Canal 900 withdrawn from the Qaraoun Dam along river. Metals in soils were analyzed using EDXRF (energy dispersive X-ray fluorescence) technique. Data revealed the following average levels of some heavy metals in soils with high percentage of samples exceeding the international guidelines: Mn (593 mg/kg)--67%, Ni (98 mg/kg)--96%, Cr (143 mg/kg)--92%, Hg (3.6 mg/kg)--38%, Cd (2.8 mg/kg)---25% and As (17.6 mg/kg)-84%. In canal soils: Mn (683 mg/kg)-86%, Ni (156 mg/kg)-100%, Cr (203 mg/kg) -100%, Hg (2.3 mg/kg)-25%, Cd (3.3 mg/kg)-25% and As (19.5 mg/kg)-92%. The prime source of toxic metals was due to the agricultural runoffs, beside sewage and domestic waste water discharge. Thus, the prominent findings of high levels of toxic metals (Cr, Cd, Hg and As) in soils and consequent probability in plants might induce a major health threat to consumers,展开更多
文摘With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.
基金supported by the National Natural Science Foundation of China (41175137)the Climate Change Working Program of MEP in 2015 (CC(2015)-9-3)the Climate Change Project of Beijing in 2014 (ZHCKT4)
文摘The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.
基金Supported by the Knowledge Innovation Program of the Chinese Adademy of Sciences (No. KZCX3-SW-215)Special Project for Marine Public Walfare Industry (No. 200705010)
文摘The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH4-, NO3-, NO2- as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 ~mol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 pmolM2 S1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I dean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.
文摘The research performed statistical analysis on 186 data concerning the amount of discharged industrial wastewater, the amount of oxygen demand of industrial wastewater, the amount of ammonia and nitrogen discharged from industries, the amount of urban discharged domestic sewage, the amount of daily life chemical oxygen demand, and the amount of domestic ammonia and nitrogen to explore source of pollutants from wastewater and guarantee urban water quality.Factor analysis was then performed with SPSS according to discharge quantity of pollutants. The results should that the major pollutants are from domestic sewage it is expected scientific suggestions be proposed on water quality in our country.
文摘There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fertilizers and pesticides. The aim of this study is to estimate the sources and the levels of metals in soils of the ULB (Upper Litani Basin) that receive all mentioned factors. Soil samples were collected during the dry season from 24 sites along the Litani River flow, and 12 sites irrigated by Canal 900 withdrawn from the Qaraoun Dam along river. Metals in soils were analyzed using EDXRF (energy dispersive X-ray fluorescence) technique. Data revealed the following average levels of some heavy metals in soils with high percentage of samples exceeding the international guidelines: Mn (593 mg/kg)--67%, Ni (98 mg/kg)--96%, Cr (143 mg/kg)--92%, Hg (3.6 mg/kg)--38%, Cd (2.8 mg/kg)---25% and As (17.6 mg/kg)-84%. In canal soils: Mn (683 mg/kg)-86%, Ni (156 mg/kg)-100%, Cr (203 mg/kg) -100%, Hg (2.3 mg/kg)-25%, Cd (3.3 mg/kg)-25% and As (19.5 mg/kg)-92%. The prime source of toxic metals was due to the agricultural runoffs, beside sewage and domestic waste water discharge. Thus, the prominent findings of high levels of toxic metals (Cr, Cd, Hg and As) in soils and consequent probability in plants might induce a major health threat to consumers,