The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the d...The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the dependence of the container’s volume on the pressure in the container and the index, during discharging at the velocity of sound, is deduced. Then through a lot of experiments, the value of index n of the process is found with a given precision and a specified volume range. Furthermore, the feasibility and practicability of this method are verified by experiments.展开更多
This study aimed to evaluate the potential impacts of an introduced clam Mercenaria mercenaria on estuarine ecosystem, and implications for the niche competition with a native clam Meretrix meretrix. The biodeposition...This study aimed to evaluate the potential impacts of an introduced clam Mercenaria mercenaria on estuarine ecosystem, and implications for the niche competition with a native clam Meretrix meretrix. The biodeposition, respiration, and excretion rates of 34. mercenaria were determined seasonally using a sediment trap and a closed respirator in field. The biodeposition rates ofM. mercenaria were 0.06-0.37 g/ (ind.·d), and the respiration rates were 0.31-14.66 mg/(ind.·d). The ammonia and phosphate excretion rates were 0.18-36.70 and 1.44-14.87 μg/(ind.·d), respectively. The hard clam M. mercenaria may discharge dry deposits up to 2.1 × 10^5 t, contribute 18.3 t ammonia and 9.0 t phosphate to culture ponds, and consume 7.9×10^3 t O2 from ponds annually. It suggested that the hard clam M. mercenaria might play an important role in pelagic-benthic coupling in pond ecosystem through biodeposition and excretion. A comparison of the key physiological parameters of the introduced clam M. mercenaria and the native clam Meretrix meretrix suggested that M. mercenaria had a niche similar to that of Meretrix meretrix in Shuangtaizi estuary and might have a potential competition with Meretrix meretrix for habitat and food ifM. mercenaria species escaped from the culture pond or artificially released in estuarine ecosystem.展开更多
AIM: To investigate the tissue distribution, urinary and fecal excretions of 125I-lidamycin (125I-C-1027) in mice and its biliary excretion in rats. METHODS:The total radioactivity assay (RA method) and the radioactiv...AIM: To investigate the tissue distribution, urinary and fecal excretions of 125I-lidamycin (125I-C-1027) in mice and its biliary excretion in rats. METHODS:The total radioactivity assay (RA method) and the radioactivity assay after precipitation with 200 mL/L trichloroacetic add (TCA-RA method) were used to dete-rmine the tissue distribution,and the urinary and fecal excretions of 125I-C-1027 in mice and its biliary excretion in rats. RESULTS:Tissue concentrations reached the peak at the fifth minute after administration of 125I-C-1027 to mice. The highest concentration was in kidney, and the lowest in brain at all test-time points. The organs of the concentrations of 125I-C-1027 from high to low were kidney, lung, liver, stomach, spleen, uterus, ovary, intestine, muscle, heart, testis, fat, and brain in mice. The accumulative excretion amounts of 0-24 h, and 0-96 h after administration of 125I-C-1027 were 68.36 and 71.64% in urine, and 2.60 and 3.21% in feces of mice, respectively, and the accumulative excretion amount of 0-24 h was 3.57% in bile in rats. CONCLUSION: Our results reflect the characteristics of the tissue distribution, urinary and fecal excretions of 125I-C-1027 in mice and the biliary excretion of 125I-C-1027 and its metabolites in rats, and indicate that 125I-C-1027 and its metabolites are mainly distributed in kidney, and excreted in urine.展开更多
文摘The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the dependence of the container’s volume on the pressure in the container and the index, during discharging at the velocity of sound, is deduced. Then through a lot of experiments, the value of index n of the process is found with a given precision and a specified volume range. Furthermore, the feasibility and practicability of this method are verified by experiments.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(No.201305043)the Key Laboratory for Ecological Environment in Coastal Areas,State Oceanic Administration(No.201311)+1 种基金the Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculturethe K.C.Wong Magna Fund at Ningbo University
文摘This study aimed to evaluate the potential impacts of an introduced clam Mercenaria mercenaria on estuarine ecosystem, and implications for the niche competition with a native clam Meretrix meretrix. The biodeposition, respiration, and excretion rates of 34. mercenaria were determined seasonally using a sediment trap and a closed respirator in field. The biodeposition rates ofM. mercenaria were 0.06-0.37 g/ (ind.·d), and the respiration rates were 0.31-14.66 mg/(ind.·d). The ammonia and phosphate excretion rates were 0.18-36.70 and 1.44-14.87 μg/(ind.·d), respectively. The hard clam M. mercenaria may discharge dry deposits up to 2.1 × 10^5 t, contribute 18.3 t ammonia and 9.0 t phosphate to culture ponds, and consume 7.9×10^3 t O2 from ponds annually. It suggested that the hard clam M. mercenaria might play an important role in pelagic-benthic coupling in pond ecosystem through biodeposition and excretion. A comparison of the key physiological parameters of the introduced clam M. mercenaria and the native clam Meretrix meretrix suggested that M. mercenaria had a niche similar to that of Meretrix meretrix in Shuangtaizi estuary and might have a potential competition with Meretrix meretrix for habitat and food ifM. mercenaria species escaped from the culture pond or artificially released in estuarine ecosystem.
基金Supported by the National High Technology Research and Development Program of China (863 Program), No. 2003AA2Z347D
文摘AIM: To investigate the tissue distribution, urinary and fecal excretions of 125I-lidamycin (125I-C-1027) in mice and its biliary excretion in rats. METHODS:The total radioactivity assay (RA method) and the radioactivity assay after precipitation with 200 mL/L trichloroacetic add (TCA-RA method) were used to dete-rmine the tissue distribution,and the urinary and fecal excretions of 125I-C-1027 in mice and its biliary excretion in rats. RESULTS:Tissue concentrations reached the peak at the fifth minute after administration of 125I-C-1027 to mice. The highest concentration was in kidney, and the lowest in brain at all test-time points. The organs of the concentrations of 125I-C-1027 from high to low were kidney, lung, liver, stomach, spleen, uterus, ovary, intestine, muscle, heart, testis, fat, and brain in mice. The accumulative excretion amounts of 0-24 h, and 0-96 h after administration of 125I-C-1027 were 68.36 and 71.64% in urine, and 2.60 and 3.21% in feces of mice, respectively, and the accumulative excretion amount of 0-24 h was 3.57% in bile in rats. CONCLUSION: Our results reflect the characteristics of the tissue distribution, urinary and fecal excretions of 125I-C-1027 in mice and the biliary excretion of 125I-C-1027 and its metabolites in rats, and indicate that 125I-C-1027 and its metabolites are mainly distributed in kidney, and excreted in urine.