In order to deal with the global change and to reduce emission of greenhouse gas, a number of countries have strengthened studies on carbon sequestration in cropland. Carbon sequestration in cropland is not only an im...In order to deal with the global change and to reduce emission of greenhouse gas, a number of countries have strengthened studies on carbon sequestration in cropland. Carbon sequestration in cropland is not only an important component for the global carbon stock, but also is the most active part to sequestrate the carbon in soil from atmosphere. In this sense, it is of necessity and significance to strengthen the study on management of carbon sequestration in cropland. Based on the main factors affecting carbon cycle in agro-ecosystems, this paper summarizes the relevant management measures to strengthen the capacity of reducing emission of carbon and increasing the carbon sequestration in cropland, and evaluates the effects of these measures after being implemented at a regional extent.展开更多
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of...The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.展开更多
AIM: To study the correlation between liver flbrosis severity and biliary drainage in patients with choledocholith. METHODS: A follow-up study on seven patients with liver fibrosis due to choledocholith was made. The ...AIM: To study the correlation between liver flbrosis severity and biliary drainage in patients with choledocholith. METHODS: A follow-up study on seven patients with liver fibrosis due to choledocholith was made. The data, including biochemical tests (aspartate aminotransferase, alanine aminotransferase) and liver histological features before and after biliary drainage, were collected and studied. The fibrosis severity was scored on a scale from 0 to 3, with 0 denoting none, 1 portal and periportal fibrosis, 2 the presence of numerous fiber septa, and 3 cirrhosis. The average liver fibrosis severity scores of the first and second biopsy were compared with statistical method. RESULTS: The first, second liver fibrosis severity scores of these seven patients were 2,1; 2,1; 1,0; 1,1; 2,1; 2,1; 1,0 respectively. The results showed that the average liver fibrosis severity score of the second liver biopsy decreased significantly compared with the first liver biopsy (n=7,t=4.25,P<0.05). CONCLUSION: Liver fibrosis due to choledocholith may regress after biliary drainage.展开更多
Type synthesis of lower-mobility parallel mechanisms is a hot and frontier topic in international academic and industrial field. Based on the Lie group theory, a displacement manifold synthesis method is proposed. For...Type synthesis of lower-mobility parallel mechanisms is a hot and frontier topic in international academic and industrial field. Based on the Lie group theory, a displacement manifold synthesis method is proposed. For all the nine kinds of lower-mobility parallel mechanisms, the mechanism displacement manifold, limb displacement manifold and the geometrical conditions which guarantee that the intersection of the limb displacement manifold is the desired mechanism displacement manifold are enumerated. Various limb kinematic chains can be obtained using the product closure of displacement subgroup. Parallel mechanisms can be constructed with these limbs while obeying the geometrical conditions. Hence, all the nine kinds of lower-mobility parallel mechanisms can be synthesized using this method. Since displacement manifold deals with finite motion, the result mechanism of synthesis have full-cycle mobility. Novel architectures of lower-mobility parallel mechanisms can be obtained using this method.展开更多
A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit ar...A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.展开更多
基金Supported by National Natural Science Foundation of China(70873118)the Chinese Academy of Sciences (kzcx2-yw-305-2)the national key scientific and technological project(2006BAC08B03,2006BAC08B06,2008BAC43B01)~~
文摘In order to deal with the global change and to reduce emission of greenhouse gas, a number of countries have strengthened studies on carbon sequestration in cropland. Carbon sequestration in cropland is not only an important component for the global carbon stock, but also is the most active part to sequestrate the carbon in soil from atmosphere. In this sense, it is of necessity and significance to strengthen the study on management of carbon sequestration in cropland. Based on the main factors affecting carbon cycle in agro-ecosystems, this paper summarizes the relevant management measures to strengthen the capacity of reducing emission of carbon and increasing the carbon sequestration in cropland, and evaluates the effects of these measures after being implemented at a regional extent.
文摘The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.
文摘AIM: To study the correlation between liver flbrosis severity and biliary drainage in patients with choledocholith. METHODS: A follow-up study on seven patients with liver fibrosis due to choledocholith was made. The data, including biochemical tests (aspartate aminotransferase, alanine aminotransferase) and liver histological features before and after biliary drainage, were collected and studied. The fibrosis severity was scored on a scale from 0 to 3, with 0 denoting none, 1 portal and periportal fibrosis, 2 the presence of numerous fiber septa, and 3 cirrhosis. The average liver fibrosis severity scores of the first and second biopsy were compared with statistical method. RESULTS: The first, second liver fibrosis severity scores of these seven patients were 2,1; 2,1; 1,0; 1,1; 2,1; 2,1; 1,0 respectively. The results showed that the average liver fibrosis severity score of the second liver biopsy decreased significantly compared with the first liver biopsy (n=7,t=4.25,P<0.05). CONCLUSION: Liver fibrosis due to choledocholith may regress after biliary drainage.
基金the National Natural Science Foundation of China (Grant No. 50075074).
文摘Type synthesis of lower-mobility parallel mechanisms is a hot and frontier topic in international academic and industrial field. Based on the Lie group theory, a displacement manifold synthesis method is proposed. For all the nine kinds of lower-mobility parallel mechanisms, the mechanism displacement manifold, limb displacement manifold and the geometrical conditions which guarantee that the intersection of the limb displacement manifold is the desired mechanism displacement manifold are enumerated. Various limb kinematic chains can be obtained using the product closure of displacement subgroup. Parallel mechanisms can be constructed with these limbs while obeying the geometrical conditions. Hence, all the nine kinds of lower-mobility parallel mechanisms can be synthesized using this method. Since displacement manifold deals with finite motion, the result mechanism of synthesis have full-cycle mobility. Novel architectures of lower-mobility parallel mechanisms can be obtained using this method.
基金supported by the National Natural Science Foundation of China (11674048)the Fundamental Research Funds for the Central Universities (N170505001 and N160502002)the Program for Shenyang Youth Science and Technology Innovation Talents (RC170269)
文摘A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.