提出一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到系...提出一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到系统出现混沌的解析条件.将这一方法成功应用到Van der Pol-Duffing振动方程的分析中,改进了振动方程出现混沌的解析条件,并利用计算机仿真进行验证,表明结果完全正确.通过与Melnikov方法、Hopf分岔方法、不动点理论得到的结果比较发现,该文提出的排除分析法比以往经典的方法更精确,适应范围更加广泛.提出的排除分析法可以适用于任何维数的自治系统和非自治系统,是一种新的混沌解析分析法.展开更多
提出了一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到...提出了一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到系统出现混沌的解析条件.将这一方法成功应用到Van der Pol—Duffing振荡器的分析中,改进了振荡器出现混沌的解析条件,并利用计算机仿真进行验证,表明结果完全正确.通过与Melnikov方法、Hopf分岔方法、不动点理论得到的结果比较发现,本文提出的排除分析法比以往经典的方法更精确,适应范围更为广泛.所提出的排除分析法可以适用于任何维数的自治系统和非自治系统,是一种新的混沌解析分析法.展开更多
In order to more effectively apply an artifact removal melhod in an online brain-computer interface (BCI) system, a new method based on canonical correlation analysis (CCA) and two-channel eleetroeneephalography ...In order to more effectively apply an artifact removal melhod in an online brain-computer interface (BCI) system, a new method based on canonical correlation analysis (CCA) and two-channel eleetroeneephalography (EEG) recordings to quickly remove ocular artifacts (OA) is proposed in this paper. Considering both the formation of EEG signals contaminated by OA and the spread of OA, vertical electrooculo~'aphy (VEOG) was appropriately introduced in CCA, and the blind source separation (BSS~ method based on CCA was used in a new way during the OA removal process. Both experimental and comparison with ICA and SOBI results show that the new method with simple calculation and fast processing speed can effectively separate and remove OA using only two-channel EEG recordings, with retaining useful EEG signals. Hence, this method used in an online BCI system will be more effective.展开更多
In this paper, the following are introduced briefly: the basic concept of q-proper-hypergeometric; an algorithmic proof theory for q-proper-hypergeometric identities; and elimination in the non- commutative Weyl alge...In this paper, the following are introduced briefly: the basic concept of q-proper-hypergeometric; an algorithmic proof theory for q-proper-hypergeometric identities; and elimination in the non- commutative Weyl algebra. We give an algorithm for proving the single-variable q-proper-hypergeometric identities that is based on Zeilberger's approach and the elimination in Weyl algebra. Finally, we test several examples that have been proven by D. Zeilberger and H. Will using the WZ-pair method and Gosper algorithm.展开更多
文摘提出一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到系统出现混沌的解析条件.将这一方法成功应用到Van der Pol-Duffing振动方程的分析中,改进了振动方程出现混沌的解析条件,并利用计算机仿真进行验证,表明结果完全正确.通过与Melnikov方法、Hopf分岔方法、不动点理论得到的结果比较发现,该文提出的排除分析法比以往经典的方法更精确,适应范围更加广泛.提出的排除分析法可以适用于任何维数的自治系统和非自治系统,是一种新的混沌解析分析法.
文摘提出了一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到系统出现混沌的解析条件.将这一方法成功应用到Van der Pol—Duffing振荡器的分析中,改进了振荡器出现混沌的解析条件,并利用计算机仿真进行验证,表明结果完全正确.通过与Melnikov方法、Hopf分岔方法、不动点理论得到的结果比较发现,本文提出的排除分析法比以往经典的方法更精确,适应范围更为广泛.所提出的排除分析法可以适用于任何维数的自治系统和非自治系统,是一种新的混沌解析分析法.
基金National Science Foundation of China grant number: 61172108,61139001 and 60872122+1 种基金Shanghai Dianji University Leading Academic Discipine Project grant number: 10xkf01
文摘In order to more effectively apply an artifact removal melhod in an online brain-computer interface (BCI) system, a new method based on canonical correlation analysis (CCA) and two-channel eleetroeneephalography (EEG) recordings to quickly remove ocular artifacts (OA) is proposed in this paper. Considering both the formation of EEG signals contaminated by OA and the spread of OA, vertical electrooculo~'aphy (VEOG) was appropriately introduced in CCA, and the blind source separation (BSS~ method based on CCA was used in a new way during the OA removal process. Both experimental and comparison with ICA and SOBI results show that the new method with simple calculation and fast processing speed can effectively separate and remove OA using only two-channel EEG recordings, with retaining useful EEG signals. Hence, this method used in an online BCI system will be more effective.
文摘In this paper, the following are introduced briefly: the basic concept of q-proper-hypergeometric; an algorithmic proof theory for q-proper-hypergeometric identities; and elimination in the non- commutative Weyl algebra. We give an algorithm for proving the single-variable q-proper-hypergeometric identities that is based on Zeilberger's approach and the elimination in Weyl algebra. Finally, we test several examples that have been proven by D. Zeilberger and H. Will using the WZ-pair method and Gosper algorithm.