In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an...In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.展开更多
The loads acting on shield tunneling machines are basic parameters for the equipment design as well as key control parameters throughout the entire operation of the equipment. In the study, a mechanical analysis for t...The loads acting on shield tunneling machines are basic parameters for the equipment design as well as key control parameters throughout the entire operation of the equipment. In the study, a mechanical analysis for the coupled interactive system between the cutterhead and the ground at the excavation face is conducted. The normal and tangential loads acting on the cutterhead are decoupled and solved, with consideration of the influence of three key factors on loads: geological condition, operating status and equipment structure. Then analytical expressions for the thrust and the torque acting on the equipment under uniform geological condition are established. On this basis, the impact of soil-rock interbedded ground on acting loads is further considered. A theoretical model for loads prediction of earth pressure balance (EPB) shield machines working under soil-rock interbedded ground is proposed. This model is subsequently applied to loads prediction for a shield tunneling project under soil-rock interbedded ground. The computational value of the thrust and the torque, the measured loads and the load ranges from Krause empirical formula are compared. Thus, this model for loads prediction acting on shield tunneling machines under soil-rock interbedded ground has been proved to be effective.展开更多
基金Project(2003AA430200)supported by the National High Technology Research and Development Program of China
文摘In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.
基金supported by the National Natural Science Foundation of China (Grant No. 11127202)the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA041801)
文摘The loads acting on shield tunneling machines are basic parameters for the equipment design as well as key control parameters throughout the entire operation of the equipment. In the study, a mechanical analysis for the coupled interactive system between the cutterhead and the ground at the excavation face is conducted. The normal and tangential loads acting on the cutterhead are decoupled and solved, with consideration of the influence of three key factors on loads: geological condition, operating status and equipment structure. Then analytical expressions for the thrust and the torque acting on the equipment under uniform geological condition are established. On this basis, the impact of soil-rock interbedded ground on acting loads is further considered. A theoretical model for loads prediction of earth pressure balance (EPB) shield machines working under soil-rock interbedded ground is proposed. This model is subsequently applied to loads prediction for a shield tunneling project under soil-rock interbedded ground. The computational value of the thrust and the torque, the measured loads and the load ranges from Krause empirical formula are compared. Thus, this model for loads prediction acting on shield tunneling machines under soil-rock interbedded ground has been proved to be effective.