Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous ...Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.展开更多
Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets...Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.展开更多
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements...In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.展开更多
With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-foun...With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-found mines which used to be identified from outcrops or were buried under shallow overburden are decreasing, especially in the prosperous eastern regions of China, which experience coal shortages. Currently the main targets of coal prospecting are concealed and unidentified underground coal bodies, making it more and more difficult for coal prospecting. It is therefore important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, we demonstrate the methodologies and existing problems systematically by summarizing past practices of coal prospecting with remote sensing. We propose a new theory of coal prospecting with remote sensing. In uncovered areas, coal resources can be prospected for by direct interpretation. In coal beating strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence.展开更多
This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that thre...This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that three thin coal seams encountered large mined-out area at one side and free surface of hill slope at the other side, which lead to the caving of roof strata movement, ground movement and crown crack along the preferred orientations of joints. The three-dimensional numeri- cal modeling study on the case demonstrated that the plasticity failure occurred gradually along with the extension of mined-out area in depth. When the depth of mining reached the verge defined by the seismic prospecting method, a large mount of tension failure occurred on the crown of the slope. The factor of safety was 1.36 calculated by the shear strength reduction technique, which indicated the slope was in stable state. The measurement showed that the residual deformation occurred before 1998 and became stable subsequently, which indicated that the residual deformation almost finished and the slope is in stable state.展开更多
High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-...High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-electric structure, and integrates electric profiling method with electric sounding method together. In this paper, the basic principle, data processing, and result explanation and inference of high- density resistivity method are introduced by taking the application of high-density resistivity method to the prospecting project in the slope of Gongchangling Open Pit, Liaoyang. The result of the prospecting result map analysis showed that the prospecting result was basically in line with the actual situation and proved the great significance of high-density resistivity method to the evaluation on the slope stability of Gongchangling open pit.展开更多
The high-resolution shallow seismic technique can be used for more accurately prospecting the position and property of faults and for the preliminary study of fault activity.The author obtains many high quality stack ...The high-resolution shallow seismic technique can be used for more accurately prospecting the position and property of faults and for the preliminary study of fault activity.The author obtains many high quality stack time sections through the prospecting methods of different seismic sources,different group intervals and different observation systems on the Xiadian fault.These sections clearly display the stratum structure and the structure characteristics from several meters to several hundred meters of the Xiadian fault.The resolutions of the different seismic sources,different group intervals and different observing systems are obtained.The prospecting methods and work parameters applicable for goal stratum of different depths and different accuracy requirements are proposed through the analysis of the stack time sections.This lays a good foundation for raising the prospecting resolution of the fault position and the latest active time of the fault.展开更多
Marine controlled source electromagnetic signal could be used in mineral resource exploration,reservoir appraisal and communicative technique in ocean. It's necessary to study the electromagnetic generated by MCSE...Marine controlled source electromagnetic signal could be used in mineral resource exploration,reservoir appraisal and communicative technique in ocean. It's necessary to study the electromagnetic generated by MCSEM. The propagation of the electromagnetic fields from a controlled source in the marine environment was studied with virtual interface method combined with discrete complex image method. Transmitter of finite length current source is approximated by dipole (HED) . A three-layered model is accepted,with sea water as intermediate conductive layer under air and a relatively high resistive seabed as basement,possibly containing a hydrogen layer of higher resistivity. The electromagnetic fields in whole space thus computed show that: (1) the spatial distribution of field component depends on its type; (2) inline Ex component is more sensitive to reservoir layer than that in broadside; (3) The airwave affects marine electromagnetic (MEM) exploration when sea water is relatively shallow; in the case of deep water MEM exploration,the airwave influence could be neglected; and (4) an appropriate frequency should be selected in order to balance the signal strength and electromagnetic induction effect.展开更多
Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by i...Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.展开更多
Well logging technology in coalbed methane (CBM) exploration may develop in two directions: one is the novel well logging methods; the other is the new interpretation methods for the conventional logging data, on w...Well logging technology in coalbed methane (CBM) exploration may develop in two directions: one is the novel well logging methods; the other is the new interpretation methods for the conventional logging data, on which the authors of this paper concentrated mainly. The paper introduced several methods in calculating with well logs such important parameters as porosity, permeability and gas content of CBM reservoir and evaluated their effectiveness. A new method of well logging data interpretation was put forward for coalbed recognition, i.e., the combination of the principal component analysis and the wavelet transform. The authors find that the second principal component (PCA2) contains much more information of coalbed in the coal-bearing series and the reconstruction signal from the detailed wavelet coefficients at level 4 (PCA24) and 5 (PCA25) highlights the signature ofcoalbeds. In terms of the characteristics of CBM reservoir in China, the authors summarized the key points in the application of well logging technique to CBM exploration, and gave a guideline for further related research work.展开更多
In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density ...In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density of crack and detect the development status of cracks underground according to shear-wave splitting phenomenon. The technology plays an important role and shows great potential in crack reservoir detection. In this study,the improved particle swarm optimization algorithm based on shrinkage factor is combined with the Pearson correlation coefficient method to obtain the fracture azimuth angle and density. The experimental results show that the modified method can improve the convergence rate,accuracy,anti-noise performance and computational efficiency.展开更多
The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficult...The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficulties to be solved in this area.Based on the characteristics of mine data and the aim of Digital Mine construction,this paper introduces a theory including multi-source data coupling,multi-modeling methods integration,multi-resolution visualization and detection,and multidimensional data analysis and application.By analyzing problems such as the uncertainty in each step of the modeling process,we designed a novel modeling method that can be applied to the complex geological body modeling,mineral resource/reserve estimation,and the mining exploration engineering.Along with the process of mine exploration,development,and reclamation,3D modeling undergoes the process of"construction-simulation-revision"during which the 3D model is able to be dynamically updated and gradually improved.Based on the result of practical utilization,it is proven that the methodology introduced by this paper can be used to build an effective 3D model by fully using the mining data under the control of spatial information quality evaluation.Our experiments show that such a 3D model can be used to evaluate the mine resource and provide the scientific evidence to improve mining efficiency during the various stages of evolvement process in mine.展开更多
Investigating source parameters of small and moderate earthquakes plays an important role in seismology research. For small and moderate earthquakes, the mechanisms are usually obtained by first motion of P-Wave, surf...Investigating source parameters of small and moderate earthquakes plays an important role in seismology research. For small and moderate earthquakes, the mechanisms are usually obtained by first motion of P-Wave, surface wave spectra method in frequency-domain or the waveform inversion in time-domain, based on the regional waveform records. We applied the wavelet domain inversion method to determine mechanism of regional earthquake. Using the wavelet coefficients of different scales can give more information to constrain the inversion. We determined the mechanisms of three earthquakes occurred in California, the United States. They are consistent with the previous results (Harvard Centroid Moment Tensor and United States Geological Service). This proves that the wavelet domain inversion method is an efficient method to determine the source parameters of small and moderate earthquakes, especially the strong aftershocks after a large, disastrous earthquake.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 40674072)National Hi-techResearch and Development Program of China (863 Program) (Grant No. 2006AA09A102-08)+1 种基金National Basic ResearchProgram of China (the 973 Program. Grant No. 007CB209603) the Opening fund of State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (GPMR200633)
文摘Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.
基金supported by the Geosciences and Technology Academy of China University of Petroleum(East China)
文摘Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.
基金This research is sponsored by National Natural Science Foundation of China (No. 40272041) and Innovative Foundation of CNPC (N0. 04E702).
文摘In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.
基金Projects 1212010733809 and 1212010534601 supported by the National Geological Prospecting Foundation of China
文摘With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-found mines which used to be identified from outcrops or were buried under shallow overburden are decreasing, especially in the prosperous eastern regions of China, which experience coal shortages. Currently the main targets of coal prospecting are concealed and unidentified underground coal bodies, making it more and more difficult for coal prospecting. It is therefore important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, we demonstrate the methodologies and existing problems systematically by summarizing past practices of coal prospecting with remote sensing. We propose a new theory of coal prospecting with remote sensing. In uncovered areas, coal resources can be prospected for by direct interpretation. In coal beating strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence.
基金Supported by the National Natural Science Foundation of China for Youth (51004065) the National Basic Research Program of China (2012CB724208)
文摘This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that three thin coal seams encountered large mined-out area at one side and free surface of hill slope at the other side, which lead to the caving of roof strata movement, ground movement and crown crack along the preferred orientations of joints. The three-dimensional numeri- cal modeling study on the case demonstrated that the plasticity failure occurred gradually along with the extension of mined-out area in depth. When the depth of mining reached the verge defined by the seismic prospecting method, a large mount of tension failure occurred on the crown of the slope. The factor of safety was 1.36 calculated by the shear strength reduction technique, which indicated the slope was in stable state. The measurement showed that the residual deformation occurred before 1998 and became stable subsequently, which indicated that the residual deformation almost finished and the slope is in stable state.
文摘High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-electric structure, and integrates electric profiling method with electric sounding method together. In this paper, the basic principle, data processing, and result explanation and inference of high- density resistivity method are introduced by taking the application of high-density resistivity method to the prospecting project in the slope of Gongchangling Open Pit, Liaoyang. The result of the prospecting result map analysis showed that the prospecting result was basically in line with the actual situation and proved the great significance of high-density resistivity method to the evaluation on the slope stability of Gongchangling open pit.
基金supported by the project of "Experimental Exploration of Urban Active Faults" of the National Development and Reform Commission of China (20041138)
文摘The high-resolution shallow seismic technique can be used for more accurately prospecting the position and property of faults and for the preliminary study of fault activity.The author obtains many high quality stack time sections through the prospecting methods of different seismic sources,different group intervals and different observation systems on the Xiadian fault.These sections clearly display the stratum structure and the structure characteristics from several meters to several hundred meters of the Xiadian fault.The resolutions of the different seismic sources,different group intervals and different observing systems are obtained.The prospecting methods and work parameters applicable for goal stratum of different depths and different accuracy requirements are proposed through the analysis of the stack time sections.This lays a good foundation for raising the prospecting resolution of the fault position and the latest active time of the fault.
基金Supperted by project of the National Science Foundation of China(No.40874050)
文摘Marine controlled source electromagnetic signal could be used in mineral resource exploration,reservoir appraisal and communicative technique in ocean. It's necessary to study the electromagnetic generated by MCSEM. The propagation of the electromagnetic fields from a controlled source in the marine environment was studied with virtual interface method combined with discrete complex image method. Transmitter of finite length current source is approximated by dipole (HED) . A three-layered model is accepted,with sea water as intermediate conductive layer under air and a relatively high resistive seabed as basement,possibly containing a hydrogen layer of higher resistivity. The electromagnetic fields in whole space thus computed show that: (1) the spatial distribution of field component depends on its type; (2) inline Ex component is more sensitive to reservoir layer than that in broadside; (3) The airwave affects marine electromagnetic (MEM) exploration when sea water is relatively shallow; in the case of deep water MEM exploration,the airwave influence could be neglected; and (4) an appropriate frequency should be selected in order to balance the signal strength and electromagnetic induction effect.
文摘Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.
基金This work was supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2006331), China Postdoctoral Science Foundation (20070411106) and Open Fund of Key Laboratory of Depositional Mineralization & Sedimentary Mineral, Shandong Province (DMSM200802).
文摘Well logging technology in coalbed methane (CBM) exploration may develop in two directions: one is the novel well logging methods; the other is the new interpretation methods for the conventional logging data, on which the authors of this paper concentrated mainly. The paper introduced several methods in calculating with well logs such important parameters as porosity, permeability and gas content of CBM reservoir and evaluated their effectiveness. A new method of well logging data interpretation was put forward for coalbed recognition, i.e., the combination of the principal component analysis and the wavelet transform. The authors find that the second principal component (PCA2) contains much more information of coalbed in the coal-bearing series and the reconstruction signal from the detailed wavelet coefficients at level 4 (PCA24) and 5 (PCA25) highlights the signature ofcoalbeds. In terms of the characteristics of CBM reservoir in China, the authors summarized the key points in the application of well logging technique to CBM exploration, and gave a guideline for further related research work.
文摘In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density of crack and detect the development status of cracks underground according to shear-wave splitting phenomenon. The technology plays an important role and shows great potential in crack reservoir detection. In this study,the improved particle swarm optimization algorithm based on shrinkage factor is combined with the Pearson correlation coefficient method to obtain the fracture azimuth angle and density. The experimental results show that the modified method can improve the convergence rate,accuracy,anti-noise performance and computational efficiency.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41272276,51174289,41102180&40742013)Innovation Research Team Program of Ministry of Education(IRT1085)+2 种基金China National Scientific and Technical Support Program(Grant Nos.201105060-06&2012BAB12B03)National Geological Survey Program(Grant No.shui[2012]-01-035-036)Fundamental Research Funds for the Central Universities(Grant No.2010YD 02)
文摘The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficulties to be solved in this area.Based on the characteristics of mine data and the aim of Digital Mine construction,this paper introduces a theory including multi-source data coupling,multi-modeling methods integration,multi-resolution visualization and detection,and multidimensional data analysis and application.By analyzing problems such as the uncertainty in each step of the modeling process,we designed a novel modeling method that can be applied to the complex geological body modeling,mineral resource/reserve estimation,and the mining exploration engineering.Along with the process of mine exploration,development,and reclamation,3D modeling undergoes the process of"construction-simulation-revision"during which the 3D model is able to be dynamically updated and gradually improved.Based on the result of practical utilization,it is proven that the methodology introduced by this paper can be used to build an effective 3D model by fully using the mining data under the control of spatial information quality evaluation.Our experiments show that such a 3D model can be used to evaluate the mine resource and provide the scientific evidence to improve mining efficiency during the various stages of evolvement process in mine.
基金supported by National Natural Science Foundation of China (Grant Nos. 40974028 and 41030319)National Basic Research Program of China (Grant No. 2008CB425701)
文摘Investigating source parameters of small and moderate earthquakes plays an important role in seismology research. For small and moderate earthquakes, the mechanisms are usually obtained by first motion of P-Wave, surface wave spectra method in frequency-domain or the waveform inversion in time-domain, based on the regional waveform records. We applied the wavelet domain inversion method to determine mechanism of regional earthquake. Using the wavelet coefficients of different scales can give more information to constrain the inversion. We determined the mechanisms of three earthquakes occurred in California, the United States. They are consistent with the previous results (Harvard Centroid Moment Tensor and United States Geological Service). This proves that the wavelet domain inversion method is an efficient method to determine the source parameters of small and moderate earthquakes, especially the strong aftershocks after a large, disastrous earthquake.