The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near ...The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near Dome A in Antarctica satisfies the conditions for obtaining million-years-old ice since it has low temperatures and low accumulation rates. We analyze the corresponding relation between radar wave features and the crystal orientation fabric (COF) types based on the results of multi-polarization plane radio echo sounding (RES). The results show that, even in the summit of the ice sheet, the COF type is not perfect, but is an elongated single-pole COF. Principal-axis-orientation differences of the COF among the different periods exist and reveal that the ice flow orientations are not constant but deviate clockwise with the increasing depth. This may be related to the adjacent basal valley or both height and position changes of the summit during the glacial-interglacial periods.展开更多
The Dashuigou tellurium(Te) deposit in Shimian city, Sichuan Province is the only known independent Te ore deposit in China. Samples were collected by1/50,000 stream sediment survey and analyzed by inductively coupled...The Dashuigou tellurium(Te) deposit in Shimian city, Sichuan Province is the only known independent Te ore deposit in China. Samples were collected by1/50,000 stream sediment survey and analyzed by inductively coupled plasma–mass spectrometry, X-ray fluorescence spectrometry, emission spectrometry, and atomic absorption spectroscopy. An ore prospecting model for the Dashuigou Te deposit was then established. In the Dashuigou area, bismuth(Bi), Te, and gold(Au) concentrations in stream sediment samples displayed weak-positive anomalies, while silver(Ag) displayed a weaknegative anomaly. Bi, Te, Ag, and Au anomalies are regarded as indicators of Te deposits; the greater the ratio of Te+Bi/Au+Ag, the larger the possibility of an independent tellurobismuthite deposit. The ratio calculated from our samples is 7.288. Five locations were identified for prospecting for Te minerals by this model, including the northern part of the Dashuigou Te deposit, Majiagou,Tizigou, southeastern Miaoping, and northern Baishuihe.These five regions are within the Dashuigou dome anticline, the exposed strata of which are controlled by tracing the tensile shear fracture; the metallogenic geological conditions and geochemical characteristics are the same as those of the known Dashuigou Te deposit. Already, Te–Bi veins have been found in some of these areas.展开更多
The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based...The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based on the comprehensive analyses of previous data, we choose the Xinqushao Village of Xingqing District of Yinchuan City as the test site for the comprehensive exploration. Firstly, we adopted shallow seismic investigation with group intervals of 10m, 5m and lm to gradually trace layer by layer the master fault of the Yinchuan buried fault from a deep depth to a shallow depth where drilling could be used. Then, with composite geological profile drilling, we determined the precise location and dip angle of the fault. The drilling show the buried depth of the upper offset point is 8.3m. Finally, large-scale trenching revealed that the actual buried depth of the upper offset point of the fault is 1.5m from the ground surface and there are paleoearthquake events of 5 stages. Combined with the preliminary result of corresponding sample age, we conclude the Yinchuan buried fault is a mid to late Holocene active fault.展开更多
Deep drilling data on seismogenic faults that are obtained directly can help in understanding earthquake mechanisms and the resulting changes in deep structure and material composition.However,geophysical data are nec...Deep drilling data on seismogenic faults that are obtained directly can help in understanding earthquake mechanisms and the resulting changes in deep structure and material composition.However,geophysical data are necessary to ensure that the planned borehole accurately drills through the target faults.In this study,the deep crustal structure of the Longmenshan fault is explored to obtain seismogenic fault characteristics of the Wenchuan earthquake.A scientific drilling project,Wenchuan Earthquake Fault Scientific Drilling No.4 Borehole(WFSD-4)is proposed with a borehole designed to drill through the north section of the fault zone while penetrating as many geological bodies and target layers related to seismogenic fault slip as possible.High-precision seismic exploration is then carried out to study the deep structure of the fault zone and achieve the scientific objective of the borehole.Two high-precision deep seismic reflection lines were arranged perpendicularly to the fault zone,and data were obtained through special acquisition schemes and processing methods.Finally,the surface position and drilling depth route of WFSD-4 are determined based on the interpretation results of seismic profiles.The seismic reflection method for site selection of the Wenchuan earthquake fault scientific drilling is proven feasible by comparing the interpretation with the actual drilling results,laying the foundation for further study on the deep structures of fault zones.展开更多
According to the working environment of the polar glacier core drilling, a separatory funnel capillary viscometer which can be used for testing the viscosity of liquids under ultra-low temperature conditions was de- s...According to the working environment of the polar glacier core drilling, a separatory funnel capillary viscometer which can be used for testing the viscosity of liquids under ultra-low temperature conditions was de- signed. This viscometer has a simple structure and it is easy to operate, which can meet the testing requirements of different temperature conditions. The viscosity of the dimethyl silicone oil KF-96L-2.0cs was measured under different temperatures using this designed viseometer, and it is found that the viscometer coefficient K changes linearly with temperature. This testing method has relatively high test accuracy and its relative error is less than 4%, which can be used to test the viscosity of the different liquids in ultra-low temperature conditions.展开更多
The Luhuatai fault is one of the important buried tectonics in the Yinchuan basin. Based on the results of shallow seismic exploration, we conducted composite drilling section exploration and dating of the samples fro...The Luhuatai fault is one of the important buried tectonics in the Yinchuan basin. Based on the results of shallow seismic exploration, we conducted composite drilling section exploration and dating of the samples from boreholes. Some useful data was obtained, such as the depth of the upper breaking point, the latest activity age, displacement in the late Quaternary, and slip rates, etc. This study shows that the activity is different between the north and south segment along the Luhuatai fault. The north segment is a Holocene fault, while the south segment is a late mid-Pleistocene fault. From north to south along the north segment of Luhuatai fault, the activity has been enhanced, and the faulting is stronger in late Pleistocene than Holocene.展开更多
For the first time we investigate the basal thermal condition in the upper area of Jima Yangzong Glacier, the headstream of Yarlung Zangbo River, using ground-penetrating radar techniques. With common offset and commo...For the first time we investigate the basal thermal condition in the upper area of Jima Yangzong Glacier, the headstream of Yarlung Zangbo River, using ground-penetrating radar techniques. With common offset and common mid-point surveys we analyze the radar velocities in ice with respect to cold-temperate ice transi- tion surface (0.1751 0.0028 m ns-~) and ice-bedrock interface (0.1657 + 0.0033 m ns-a), indicating a radar velocity of 0.1410 4- 0.0154 m ns-1 for the temperate ice layer (16.6 ~ 1.8 m). We estimate that the temperate ice layer has a water content of around 6 % 4- 4 %, suggesting that the Jima Yangzong Glacier, previously known as continental-type, now possibly becomes polythermal.展开更多
In situ stress state becomes more and more significant with in-depth research on geodynamics and energy development.However,there has not been an economic and effective method developed to determine deep three-dimensi...In situ stress state becomes more and more significant with in-depth research on geodynamics and energy development.However,there has not been an economic and effective method developed to determine deep three-dimensional in situ stress.The Anelastic Strain Recovery(ASR)method is a newly developed technique that can determine three-dimensional in situ stresses.After the 12 May 2008 Ms8.0 Wenchuan earthquake,the ASR method was used for the first time in China's Mainland to measure the in situ stresses in the WFSD scientific boreholes in Sichuan Province,China.In this paper,the basic procedure of the ASR method is introduced in detail and the compliances of ASR for boring cores are investigated.The results show that the maximum principal stress direction was NW64°at a measured depth(MD)of 1173 m(vertical depth 1151 m)in WFSD-1.The ratio of shear mode to the volume mode compliance of ASR was 2.9.And the three principal stresses at 1173 m MD in WFSD-1are 43,28 and 25 MPa.Combined with stress measurement results determined using other in situ measurement methods along the Longmenshan fault zone,the directions of the maximum horizontal principal stress changes from E-W to NEE-SWW to NWW-SEE when moving from NE to SW along the Longmenshan fault zone.This change is in agreement with the stress regime of the Longmenshan fault zone of the Wenchuan Earthquake,which supports a stress regime consisting predominantly of thrusts in the southwest and strike-slip in the northeast.展开更多
The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton...The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton. The CSB has long been considered as the oldest and most stable core area of Yangtze Craton, with the uniform basement and high level of hardening. Here we present a detailed interpretation of deep structures in the CSB by integrating high-resolution seismic data(approx. 50000 km2) with large-scale aeromagnetic data. Results show that eight Neoproterozoic extensional structures of different scales are nearly EW-, NEE-, and NW-trending in the CSB. Discovery of these extensional structures changes previous understanding of the CSB as a unified block. The extensional structures experienced one or two stages of extension in the longitudinal section, and filled with 3000–5000-m-thick weakly magnetic materials. Development of basal A-type granite in Weiyuan, Sichuan Basin and bimodal volcanic rocks of the Suxiong Formation, Western Sichuan confirms the CSB's Neoproterozoic extensional tectonic setting. The newly discovered Neoproterozoic extensional structures are of great significance for source rock and favorable sedimentary facies distribution, reservoir development, and gas accumulation.展开更多
基金the National Natural Science Foundation of China(Grant No.40874060)the 863 projection(Grant No.2006AA09Z152)
文摘The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near Dome A in Antarctica satisfies the conditions for obtaining million-years-old ice since it has low temperatures and low accumulation rates. We analyze the corresponding relation between radar wave features and the crystal orientation fabric (COF) types based on the results of multi-polarization plane radio echo sounding (RES). The results show that, even in the summit of the ice sheet, the COF type is not perfect, but is an elongated single-pole COF. Principal-axis-orientation differences of the COF among the different periods exist and reveal that the ice flow orientations are not constant but deviate clockwise with the increasing depth. This may be related to the adjacent basal valley or both height and position changes of the summit during the glacial-interglacial periods.
基金supported by the Institute of Geochemistry, Chinese Academy of Sciences (03JY029-027-1)Sichuan Geological Survey (12120113051400)the State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences for its open program funding
文摘The Dashuigou tellurium(Te) deposit in Shimian city, Sichuan Province is the only known independent Te ore deposit in China. Samples were collected by1/50,000 stream sediment survey and analyzed by inductively coupled plasma–mass spectrometry, X-ray fluorescence spectrometry, emission spectrometry, and atomic absorption spectroscopy. An ore prospecting model for the Dashuigou Te deposit was then established. In the Dashuigou area, bismuth(Bi), Te, and gold(Au) concentrations in stream sediment samples displayed weak-positive anomalies, while silver(Ag) displayed a weaknegative anomaly. Bi, Te, Ag, and Au anomalies are regarded as indicators of Te deposits; the greater the ratio of Te+Bi/Au+Ag, the larger the possibility of an independent tellurobismuthite deposit. The ratio calculated from our samples is 7.288. Five locations were identified for prospecting for Te minerals by this model, including the northern part of the Dashuigou Te deposit, Majiagou,Tizigou, southeastern Miaoping, and northern Baishuihe.These five regions are within the Dashuigou dome anticline, the exposed strata of which are controlled by tracing the tensile shear fracture; the metallogenic geological conditions and geochemical characteristics are the same as those of the known Dashuigou Te deposit. Already, Te–Bi veins have been found in some of these areas.
基金The research was jointly sponsored by the National Development and Reform Commission of China under the project of"Experimental Exploration of Active Fault in Urban Area"(20041138)by National Natural Science Foundation of China (40234040)
文摘The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based on the comprehensive analyses of previous data, we choose the Xinqushao Village of Xingqing District of Yinchuan City as the test site for the comprehensive exploration. Firstly, we adopted shallow seismic investigation with group intervals of 10m, 5m and lm to gradually trace layer by layer the master fault of the Yinchuan buried fault from a deep depth to a shallow depth where drilling could be used. Then, with composite geological profile drilling, we determined the precise location and dip angle of the fault. The drilling show the buried depth of the upper offset point is 8.3m. Finally, large-scale trenching revealed that the actual buried depth of the upper offset point of the fault is 1.5m from the ground surface and there are paleoearthquake events of 5 stages. Combined with the preliminary result of corresponding sample age, we conclude the Yinchuan buried fault is a mid to late Holocene active fault.
基金supported by the“Deep Structure and Variation Characteristics of Fracture Shear Band of the Longmenshan Fault Zone”of the National Natural Science Foundation of China (No.42174123)the“Wenchuan Earthquake Fault Scientific Drilling”of the National Science and Technology Planning Project and the“3D Geological Mapping of Longmenshan Fault Zone”Project of the CGS China Geological Survey (No.1212011220265).
文摘Deep drilling data on seismogenic faults that are obtained directly can help in understanding earthquake mechanisms and the resulting changes in deep structure and material composition.However,geophysical data are necessary to ensure that the planned borehole accurately drills through the target faults.In this study,the deep crustal structure of the Longmenshan fault is explored to obtain seismogenic fault characteristics of the Wenchuan earthquake.A scientific drilling project,Wenchuan Earthquake Fault Scientific Drilling No.4 Borehole(WFSD-4)is proposed with a borehole designed to drill through the north section of the fault zone while penetrating as many geological bodies and target layers related to seismogenic fault slip as possible.High-precision seismic exploration is then carried out to study the deep structure of the fault zone and achieve the scientific objective of the borehole.Two high-precision deep seismic reflection lines were arranged perpendicularly to the fault zone,and data were obtained through special acquisition schemes and processing methods.Finally,the surface position and drilling depth route of WFSD-4 are determined based on the interpretation results of seismic profiles.The seismic reflection method for site selection of the Wenchuan earthquake fault scientific drilling is proven feasible by comparing the interpretation with the actual drilling results,laying the foundation for further study on the deep structures of fault zones.
基金Supported Project of the Natural Science Foundations of China(No.41106158)
文摘According to the working environment of the polar glacier core drilling, a separatory funnel capillary viscometer which can be used for testing the viscosity of liquids under ultra-low temperature conditions was de- signed. This viscometer has a simple structure and it is easy to operate, which can meet the testing requirements of different temperature conditions. The viscosity of the dimethyl silicone oil KF-96L-2.0cs was measured under different temperatures using this designed viseometer, and it is found that the viscometer coefficient K changes linearly with temperature. This testing method has relatively high test accuracy and its relative error is less than 4%, which can be used to test the viscosity of the different liquids in ultra-low temperature conditions.
基金funded by the Special R&D Fund for Earthquake Study,China (201008003)
文摘The Luhuatai fault is one of the important buried tectonics in the Yinchuan basin. Based on the results of shallow seismic exploration, we conducted composite drilling section exploration and dating of the samples from boreholes. Some useful data was obtained, such as the depth of the upper breaking point, the latest activity age, displacement in the late Quaternary, and slip rates, etc. This study shows that the activity is different between the north and south segment along the Luhuatai fault. The north segment is a Holocene fault, while the south segment is a late mid-Pleistocene fault. From north to south along the north segment of Luhuatai fault, the activity has been enhanced, and the faulting is stronger in late Pleistocene than Holocene.
基金supported by the Polar Atmospheric Science Field Base of CAMS(2016Z005)National Natural Science Foundation of China(41425003)National Fundamental Research Project(973)of China(2007CB411503)
文摘For the first time we investigate the basal thermal condition in the upper area of Jima Yangzong Glacier, the headstream of Yarlung Zangbo River, using ground-penetrating radar techniques. With common offset and common mid-point surveys we analyze the radar velocities in ice with respect to cold-temperate ice transi- tion surface (0.1751 0.0028 m ns-~) and ice-bedrock interface (0.1657 + 0.0033 m ns-a), indicating a radar velocity of 0.1410 4- 0.0154 m ns-1 for the temperate ice layer (16.6 ~ 1.8 m). We estimate that the temperate ice layer has a water content of around 6 % 4- 4 %, suggesting that the Jima Yangzong Glacier, previously known as continental-type, now possibly becomes polythermal.
基金financially supported by the"Wenchuan Earthquake Fault Scientific Drilling"of the National Science and Technology Planning Project,Sinoprobe Deep Exploration in China Project(Grant No.SinoProbe-07)Fundamental Research Fund for Chinese Academy of Geological Sciences(Grant No.SYS1301)+1 种基金Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science(JSPS)(Grant No.25287134)Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan(Grant No.21107006)
文摘In situ stress state becomes more and more significant with in-depth research on geodynamics and energy development.However,there has not been an economic and effective method developed to determine deep three-dimensional in situ stress.The Anelastic Strain Recovery(ASR)method is a newly developed technique that can determine three-dimensional in situ stresses.After the 12 May 2008 Ms8.0 Wenchuan earthquake,the ASR method was used for the first time in China's Mainland to measure the in situ stresses in the WFSD scientific boreholes in Sichuan Province,China.In this paper,the basic procedure of the ASR method is introduced in detail and the compliances of ASR for boring cores are investigated.The results show that the maximum principal stress direction was NW64°at a measured depth(MD)of 1173 m(vertical depth 1151 m)in WFSD-1.The ratio of shear mode to the volume mode compliance of ASR was 2.9.And the three principal stresses at 1173 m MD in WFSD-1are 43,28 and 25 MPa.Combined with stress measurement results determined using other in situ measurement methods along the Longmenshan fault zone,the directions of the maximum horizontal principal stress changes from E-W to NEE-SWW to NWW-SEE when moving from NE to SW along the Longmenshan fault zone.This change is in agreement with the stress regime of the Longmenshan fault zone of the Wenchuan Earthquake,which supports a stress regime consisting predominantly of thrusts in the southwest and strike-slip in the northeast.
基金supported by the National Oil&Gas Major Project of China(Grant No.2011ZX05004)the CNPC Science&Technology Project(Grant No.111702kt00900046)
文摘The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton. The CSB has long been considered as the oldest and most stable core area of Yangtze Craton, with the uniform basement and high level of hardening. Here we present a detailed interpretation of deep structures in the CSB by integrating high-resolution seismic data(approx. 50000 km2) with large-scale aeromagnetic data. Results show that eight Neoproterozoic extensional structures of different scales are nearly EW-, NEE-, and NW-trending in the CSB. Discovery of these extensional structures changes previous understanding of the CSB as a unified block. The extensional structures experienced one or two stages of extension in the longitudinal section, and filled with 3000–5000-m-thick weakly magnetic materials. Development of basal A-type granite in Weiyuan, Sichuan Basin and bimodal volcanic rocks of the Suxiong Formation, Western Sichuan confirms the CSB's Neoproterozoic extensional tectonic setting. The newly discovered Neoproterozoic extensional structures are of great significance for source rock and favorable sedimentary facies distribution, reservoir development, and gas accumulation.