果园靶标冠层叶面积有效探测是施药量在线计算的基本依据。针对树形靶标稠密和稀疏2种冠层类型,搭建叶面积测量三维立体试验平台和激光雷达(Light detection and ranging,LiDAR)探测移动试验平台,构建不同厚度和稠密度树形靶标,采用偏...果园靶标冠层叶面积有效探测是施药量在线计算的基本依据。针对树形靶标稠密和稀疏2种冠层类型,搭建叶面积测量三维立体试验平台和激光雷达(Light detection and ranging,LiDAR)探测移动试验平台,构建不同厚度和稠密度树形靶标,采用偏最小二乘回归(Partial least squares regression,PLSR)算法与BP(Back propagation)神经网络算法建立了冠层叶面积探测模型。试验结果表明:PLSR算法获得稠密厚冠层、稀疏厚冠层、稠密薄冠层和稀疏薄冠层叶面积探测模型的决定系数(R2)分别为:0.9626、0.4130、0.8896、0.2699;BP神经网络算法获得模型的R2依次为:0.9727、0.5302、0.8993、0.4290。基于LiDAR的冠层叶面积探测模型对稠密冠层探测精度较高,R2不低于0.8896,对稀疏冠层探测精度较低,不高于0.5302,该探测方法可用于稠密冠层叶面积在线计算,指导果园精准变量喷药。展开更多
设计了一种基于方形多毛细管X射线透镜的X射线探测系统,该系统具有较小的X射线收集角。方形多毛细管X射线透镜是一种基于X射线全反射的X射线调控器件,可将大面积范围内的X射线汇聚至X射线CCD探测器。通过测定X射线在方形多毛细管X射线...设计了一种基于方形多毛细管X射线透镜的X射线探测系统,该系统具有较小的X射线收集角。方形多毛细管X射线透镜是一种基于X射线全反射的X射线调控器件,可将大面积范围内的X射线汇聚至X射线CCD探测器。通过测定X射线在方形多毛细管X射线透镜中的传输特性、建立数据模型,可校正X射线CCD所测数据并还原透镜入口端的入射X射线信息。通过光线轨迹追踪方法模拟了方形多毛细管X射线透镜的传输特性。结果表明,该系统适合探测能量低于21.5 ke V的X射线,用于大面积成像;也适合探测能量低于14.6 ke V的X射线,用于提高探测效率。该系统不仅可用于诸如X射线脉冲星导航等特殊应用,也可用于常规X射线探测。展开更多
文摘果园靶标冠层叶面积有效探测是施药量在线计算的基本依据。针对树形靶标稠密和稀疏2种冠层类型,搭建叶面积测量三维立体试验平台和激光雷达(Light detection and ranging,LiDAR)探测移动试验平台,构建不同厚度和稠密度树形靶标,采用偏最小二乘回归(Partial least squares regression,PLSR)算法与BP(Back propagation)神经网络算法建立了冠层叶面积探测模型。试验结果表明:PLSR算法获得稠密厚冠层、稀疏厚冠层、稠密薄冠层和稀疏薄冠层叶面积探测模型的决定系数(R2)分别为:0.9626、0.4130、0.8896、0.2699;BP神经网络算法获得模型的R2依次为:0.9727、0.5302、0.8993、0.4290。基于LiDAR的冠层叶面积探测模型对稠密冠层探测精度较高,R2不低于0.8896,对稀疏冠层探测精度较低,不高于0.5302,该探测方法可用于稠密冠层叶面积在线计算,指导果园精准变量喷药。
文摘设计了一种基于方形多毛细管X射线透镜的X射线探测系统,该系统具有较小的X射线收集角。方形多毛细管X射线透镜是一种基于X射线全反射的X射线调控器件,可将大面积范围内的X射线汇聚至X射线CCD探测器。通过测定X射线在方形多毛细管X射线透镜中的传输特性、建立数据模型,可校正X射线CCD所测数据并还原透镜入口端的入射X射线信息。通过光线轨迹追踪方法模拟了方形多毛细管X射线透镜的传输特性。结果表明,该系统适合探测能量低于21.5 ke V的X射线,用于大面积成像;也适合探测能量低于14.6 ke V的X射线,用于提高探测效率。该系统不仅可用于诸如X射线脉冲星导航等特殊应用,也可用于常规X射线探测。