This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rota...This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.展开更多
A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we bu...A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.展开更多
It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This...It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This paper presents a detailed experimental investigation of effects of distributed riblet on the flow field of an axial compressor iso- lated-rotor stage. The research was performed in a large-scale facility respectively with two configurations, in- eluding grooved hub, and grooved surface on both hub and partial suction surface. The riblet film is rectangle grooved type with a height of 0.1 ram. The flow field at 10% chord downstream from the cascade trailing edge was measured using a mini five-hole pressure probe and a total pressure probe. The testing was conducted at sev- eral operational points under two reduced rotational speeds. Stagnation pressure loss in rotational frame was cal- culated and compared with the control test in which a smooth film was applied to the corresponding position. Results show that with the grooved hub configuration at the design operation point of the lower rotational speed, the riblet film provides an obvious improvement of a 48% reduction of total pressure loss in rotational frame. Also, a distinct weaken hub comer vortex was identified. In the meantime, there exists a deviation of flow angle about 5 degrees at 20%-80% span which previously was not considered to be the affected region.展开更多
文摘This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.
文摘A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525 and 51136003supported by the 111 Project,No.B07009
文摘It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This paper presents a detailed experimental investigation of effects of distributed riblet on the flow field of an axial compressor iso- lated-rotor stage. The research was performed in a large-scale facility respectively with two configurations, in- eluding grooved hub, and grooved surface on both hub and partial suction surface. The riblet film is rectangle grooved type with a height of 0.1 ram. The flow field at 10% chord downstream from the cascade trailing edge was measured using a mini five-hole pressure probe and a total pressure probe. The testing was conducted at sev- eral operational points under two reduced rotational speeds. Stagnation pressure loss in rotational frame was cal- culated and compared with the control test in which a smooth film was applied to the corresponding position. Results show that with the grooved hub configuration at the design operation point of the lower rotational speed, the riblet film provides an obvious improvement of a 48% reduction of total pressure loss in rotational frame. Also, a distinct weaken hub comer vortex was identified. In the meantime, there exists a deviation of flow angle about 5 degrees at 20%-80% span which previously was not considered to be the affected region.