A traffic sensitive spectrum access scheme is proposed to satisfy the traffic load requirement of secondary users (SUs). In the proposed design, SU only accesses available channels which can meet the traffic demand....A traffic sensitive spectrum access scheme is proposed to satisfy the traffic load requirement of secondary users (SUs). In the proposed design, SU only accesses available channels which can meet the traffic demand. To achieve this, the expected transmission time (E3W) of the SU is calcu- lated first based on the delivery ratio. Then, the channel idle time is estimated based on the activity of primary users (PUs). Therefore, available channels with estimated idle time longer than ETr could be chosen. With high probability, the SU can finish transmission on these channels without disruption, thereby satisfying the traffic load demand of the SU. Finally, our method is extended to the multi-channel scenario where each SU can access multiple channels simultaneously. Performance analysis shows that our method satisfies the requirement of SUs while effectively improving the throughput.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA010503)the National Natural Science Foundation of China(No.60903192)
文摘A traffic sensitive spectrum access scheme is proposed to satisfy the traffic load requirement of secondary users (SUs). In the proposed design, SU only accesses available channels which can meet the traffic demand. To achieve this, the expected transmission time (E3W) of the SU is calcu- lated first based on the delivery ratio. Then, the channel idle time is estimated based on the activity of primary users (PUs). Therefore, available channels with estimated idle time longer than ETr could be chosen. With high probability, the SU can finish transmission on these channels without disruption, thereby satisfying the traffic load demand of the SU. Finally, our method is extended to the multi-channel scenario where each SU can access multiple channels simultaneously. Performance analysis shows that our method satisfies the requirement of SUs while effectively improving the throughput.