Movement accuracy is the key factor to be considered in designing precision instrument linkage and mini-linkage mechanisms. Although manufacturing errors, elastic deformation, kinematic pair clearance and friction fac...Movement accuracy is the key factor to be considered in designing precision instrument linkage and mini-linkage mechanisms. Although manufacturing errors, elastic deformation, kinematic pair clearance and friction factors all will have synthesis effect on the position accuracy of the mechanical system, the essential factor to guarantee the movement precision remains the kinematic dimensions. Combining the classical theory of mechanical synthesis with the modern error theory and the numerical method, the authors put forward a systematic and complete process and method of computer aided design for the instrument crank-coupler mechanism in which the follower takes the linear displacement approximately within a certain limited domain, with the design result of least transmission ratio error.展开更多
For reducing the computational complexity of the problem of joint transmit and receive antenna selection in Multiple-Input-Multiple-Output (MIMO) systems, we present a concise joint transmit/receive antenna selection ...For reducing the computational complexity of the problem of joint transmit and receive antenna selection in Multiple-Input-Multiple-Output (MIMO) systems, we present a concise joint transmit/receive antenna selection algorithm. Using a novel partition of the channel matrix, we drive a concise formula. This formula enables us to augment the channel matrix in such a way that the computational complexity of the greedy Joint Transmit/Receive Antenna Selection (JTRAS) algorithm is reduced by a factor of 4n L , where n L is the number of selected antennas. A decoupled version of the proposed algorithm is also proposed to further improve the efficiency of the JTRAS algorithm, with some capacity degradation as a tradeoff. The computational complexity and the performance of the proposed approaches are evaluated mathematically and verified by computer simulations. The results have shown that the proposed joint antenna selection algorithm maintains the capacity perormance of the JTRAS algorithm while its computational complexity is only 1/4n L of that of the JTRAS algorithm. The decoupled version of the proposed algorithm further reduces the computational complexity of the joint antenna selection and has better performance than other decoupling-based algorithms when the selected antenna subset is small as compared to the total number of antennas.展开更多
This paper proposes the design and research on the high bandwidth linear frequency sweep signal source involved in the readout unit module of the wireless passive pressure sensor in high temperature based on the princ...This paper proposes the design and research on the high bandwidth linear frequency sweep signal source involved in the readout unit module of the wireless passive pressure sensor in high temperature based on the principle of mutual inductance coupling which is applied widely at present. The operating principle of the linear sweep frequency source based on the direct digital frequency synthesis (DDS) technology is introduced, and the implementation method of the hardware circuit and logic sequential control process required in our system has been realized utilizing this technology. Through the experiments under different conditions of the step value, the sweep range and other related design indicators, the influence on the extraction method of resonance frequency information, extraction accuracy, and others during the readout system of the mutual inductance coupling sensor are analyzed and studied. The design of the linear frequency sweep signal source is realized with a resonance frequency change resolution of 6 kHz, a minimum step value of 1 kHz, and a precision of frequency for 0.116 Hz within the sweep width of 1 MHz - 100MHz. Due to the use of the integrated commercial chip, the linear sweep frequency source is made small in size, high working frequency, high resolution and low step values for the readout unit modularized of a higher application value.展开更多
文摘Movement accuracy is the key factor to be considered in designing precision instrument linkage and mini-linkage mechanisms. Although manufacturing errors, elastic deformation, kinematic pair clearance and friction factors all will have synthesis effect on the position accuracy of the mechanical system, the essential factor to guarantee the movement precision remains the kinematic dimensions. Combining the classical theory of mechanical synthesis with the modern error theory and the numerical method, the authors put forward a systematic and complete process and method of computer aided design for the instrument crank-coupler mechanism in which the follower takes the linear displacement approximately within a certain limited domain, with the design result of least transmission ratio error.
文摘For reducing the computational complexity of the problem of joint transmit and receive antenna selection in Multiple-Input-Multiple-Output (MIMO) systems, we present a concise joint transmit/receive antenna selection algorithm. Using a novel partition of the channel matrix, we drive a concise formula. This formula enables us to augment the channel matrix in such a way that the computational complexity of the greedy Joint Transmit/Receive Antenna Selection (JTRAS) algorithm is reduced by a factor of 4n L , where n L is the number of selected antennas. A decoupled version of the proposed algorithm is also proposed to further improve the efficiency of the JTRAS algorithm, with some capacity degradation as a tradeoff. The computational complexity and the performance of the proposed approaches are evaluated mathematically and verified by computer simulations. The results have shown that the proposed joint antenna selection algorithm maintains the capacity perormance of the JTRAS algorithm while its computational complexity is only 1/4n L of that of the JTRAS algorithm. The decoupled version of the proposed algorithm further reduces the computational complexity of the joint antenna selection and has better performance than other decoupling-based algorithms when the selected antenna subset is small as compared to the total number of antennas.
文摘This paper proposes the design and research on the high bandwidth linear frequency sweep signal source involved in the readout unit module of the wireless passive pressure sensor in high temperature based on the principle of mutual inductance coupling which is applied widely at present. The operating principle of the linear sweep frequency source based on the direct digital frequency synthesis (DDS) technology is introduced, and the implementation method of the hardware circuit and logic sequential control process required in our system has been realized utilizing this technology. Through the experiments under different conditions of the step value, the sweep range and other related design indicators, the influence on the extraction method of resonance frequency information, extraction accuracy, and others during the readout system of the mutual inductance coupling sensor are analyzed and studied. The design of the linear frequency sweep signal source is realized with a resonance frequency change resolution of 6 kHz, a minimum step value of 1 kHz, and a precision of frequency for 0.116 Hz within the sweep width of 1 MHz - 100MHz. Due to the use of the integrated commercial chip, the linear sweep frequency source is made small in size, high working frequency, high resolution and low step values for the readout unit modularized of a higher application value.