A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In...A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.展开更多
We design a double quantum-dot (QD) shuttle (DQDS) model including two rigidly connected QDs that are softly linked to two leads via deformable organic materiaJs. Based on the full quantum mechanical approaches we...We design a double quantum-dot (QD) shuttle (DQDS) model including two rigidly connected QDs that are softly linked to two leads via deformable organic materiaJs. Based on the full quantum mechanical approaches we explore the influences on the electron transport induced by the electrical and mechanical degrees of freedom. First of a/l the modified rate equations of the DQDS are derived theoretically and then a numerical investigation on the quantum transport through the DQDS is performed. For the classical DQDS, the time-dependent evolutions of the electron- occupation probabilities and the currents flowing through the DQDS show the periodic oscillations with their periods determined by the oscillation period of the DQDS. Both the mechanical oscillation amplitude and the interdot coupling can play crucial roles in adjusting the peak shapes of the currents and the probabilities. For the quantum DQDS, the current and electron-occupation probabilities of the DQDS evolve into a stationary state as time goes on, with no periodical oscillations observed. As a consequence, the sharp differences of the time-dependent properties between the c/assica/ and quantum DQDS systems are clearly demonstrated, which should be greatly helpful in designing new nanoelectromechanical devices. Also, this work is of great significance to understanding the kind of rigidly connected QD shuttle systems that have more than two QDs.展开更多
文摘A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10974015,11174024,and 11274040the Program for New Century Excellent Talents in University under Grant No.NCET-08-0044the National Basic Research Program of China under Grant No.2013CB921903
文摘We design a double quantum-dot (QD) shuttle (DQDS) model including two rigidly connected QDs that are softly linked to two leads via deformable organic materiaJs. Based on the full quantum mechanical approaches we explore the influences on the electron transport induced by the electrical and mechanical degrees of freedom. First of a/l the modified rate equations of the DQDS are derived theoretically and then a numerical investigation on the quantum transport through the DQDS is performed. For the classical DQDS, the time-dependent evolutions of the electron- occupation probabilities and the currents flowing through the DQDS show the periodic oscillations with their periods determined by the oscillation period of the DQDS. Both the mechanical oscillation amplitude and the interdot coupling can play crucial roles in adjusting the peak shapes of the currents and the probabilities. For the quantum DQDS, the current and electron-occupation probabilities of the DQDS evolve into a stationary state as time goes on, with no periodical oscillations observed. As a consequence, the sharp differences of the time-dependent properties between the c/assica/ and quantum DQDS systems are clearly demonstrated, which should be greatly helpful in designing new nanoelectromechanical devices. Also, this work is of great significance to understanding the kind of rigidly connected QD shuttle systems that have more than two QDs.