以蓝田县作为研究区,选取高程、坡度、坡向、曲率、降雨量、距水系距离、地层岩性、距断层距离、距道路距离、归一化植被指数(normalized difference vegetation index,NDVI)共10类评价因子,分别采用皮尔森相关系数、方差膨胀因子、容忍...以蓝田县作为研究区,选取高程、坡度、坡向、曲率、降雨量、距水系距离、地层岩性、距断层距离、距道路距离、归一化植被指数(normalized difference vegetation index,NDVI)共10类评价因子,分别采用皮尔森相关系数、方差膨胀因子、容忍度3种指标对评价因子之间的多重共线性问题进行分析。结果表明,各选取因子之间多重共线性较低,可以认为各因子相对独立。随后,采用频率比法分析各评价因子与滑坡灾害点之间的空间分布关系。分别利用熵指数(index of entropy,IOE)模型、逻辑回归(logistic regression,LR)模型以及两种模型耦合作用下的逻辑回归与熵指数耦合(integration of logistic regression and index of entropy,IOE-LR)模型对研究区滑坡易发性进行评价,得到各模型下的研究区滑坡灾害易发性区划图。最终采用接受者操作特性(receiver operating characterstic,ROC)曲线验证并比较了3种模型的性能。成功率曲线表明,IOE模型、LR模型、IOE-LR模型的ROC曲线下的面积(area under curve,AUC)分别为0.735、0.742和0.805;预测率曲线表明,IOE模型、LR模型、IOE-LR模型的ROC曲线下的面积AUC分别为0.732、0.785和0.830,其中IOE-LR模型均具有最高的准确率。生成的滑坡易发性区划图可以为蓝田县政府合理解决土地利用规划问题以及减轻滑坡风险提供有效参考。展开更多
This paper presents a novel bootstrap based method for Receiver Operating Characteristic (ROC) analysis of Fisher classifier. By defining Fisher classifier’s output as a statistic, the bootstrap technique is used to ...This paper presents a novel bootstrap based method for Receiver Operating Characteristic (ROC) analysis of Fisher classifier. By defining Fisher classifier’s output as a statistic, the bootstrap technique is used to obtain the sampling distributions of the outputs for the positive class and the negative class respectively. As a result, the ROC curve is a plot of all the (False Positive Rate (FPR), True Positive Rate (TPR)) pairs by varying the decision threshold over the whole range of the boot- strap sampling distributions. The advantage of this method is, the bootstrap based ROC curves are much stable than those of the holdout or cross-validation, indicating a more stable ROC analysis of Fisher classifier. Experiments on five data sets publicly available demonstrate the effectiveness of the proposed method.展开更多
文摘以蓝田县作为研究区,选取高程、坡度、坡向、曲率、降雨量、距水系距离、地层岩性、距断层距离、距道路距离、归一化植被指数(normalized difference vegetation index,NDVI)共10类评价因子,分别采用皮尔森相关系数、方差膨胀因子、容忍度3种指标对评价因子之间的多重共线性问题进行分析。结果表明,各选取因子之间多重共线性较低,可以认为各因子相对独立。随后,采用频率比法分析各评价因子与滑坡灾害点之间的空间分布关系。分别利用熵指数(index of entropy,IOE)模型、逻辑回归(logistic regression,LR)模型以及两种模型耦合作用下的逻辑回归与熵指数耦合(integration of logistic regression and index of entropy,IOE-LR)模型对研究区滑坡易发性进行评价,得到各模型下的研究区滑坡灾害易发性区划图。最终采用接受者操作特性(receiver operating characterstic,ROC)曲线验证并比较了3种模型的性能。成功率曲线表明,IOE模型、LR模型、IOE-LR模型的ROC曲线下的面积(area under curve,AUC)分别为0.735、0.742和0.805;预测率曲线表明,IOE模型、LR模型、IOE-LR模型的ROC曲线下的面积AUC分别为0.732、0.785和0.830,其中IOE-LR模型均具有最高的准确率。生成的滑坡易发性区划图可以为蓝田县政府合理解决土地利用规划问题以及减轻滑坡风险提供有效参考。
基金the Natural Science Foundation of Zhejiang Province of China (No. Y104540)the Foundation of the Key Laboratory of Advanced Information Science and Network Technology of Beijing, China (No.TDXX0509).
文摘This paper presents a novel bootstrap based method for Receiver Operating Characteristic (ROC) analysis of Fisher classifier. By defining Fisher classifier’s output as a statistic, the bootstrap technique is used to obtain the sampling distributions of the outputs for the positive class and the negative class respectively. As a result, the ROC curve is a plot of all the (False Positive Rate (FPR), True Positive Rate (TPR)) pairs by varying the decision threshold over the whole range of the boot- strap sampling distributions. The advantage of this method is, the bootstrap based ROC curves are much stable than those of the holdout or cross-validation, indicating a more stable ROC analysis of Fisher classifier. Experiments on five data sets publicly available demonstrate the effectiveness of the proposed method.