In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-i...In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-iron ladle transportation process between blast furnace and basic oxygen furnace. Moreover, basic parameters of material flow were analyzed and optimized, such as time, temperature and material quantity. Based on operating principles of material flow, control methods were optimized, such as product organization mode, scheduling discipline and scheduling plan of hot metal ladle. Finally, the material flow control technology of ironmaking and steelmaking interface was integrated. Satisfactory effects are obtained after applying the technology in practice. The total turnover number of torpedo ladle decreases from 20 to 18, the hot metal temperature of 1# BF torpedo ladle decreases from 36 °C to 19.5 °C, the hot metal temperature of 2# BF torpedo ladle decreases from 36.6 °C to 19.8 °C, the temperature drop of desulfurization hot metal decreases by 4 °C, and the temperature drop of non-desulfurization hot metal decreases by 2.8 °C. Furthermore, the ironmaking and steelmaking interface system will realize high-efficiency control by using this control technology.展开更多
A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control...A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.展开更多
his paper studies the vehicle CAN bus control technology, and analyzes the control system of automobile based on CAN technology. This paper focus on the design of single-chip microcomputer STC89C52 be as the platform ...his paper studies the vehicle CAN bus control technology, and analyzes the control system of automobile based on CAN technology. This paper focus on the design of single-chip microcomputer STC89C52 be as the platform to achieve the design of CAN bus, introduce in detail the structure and working principle of SJA1000 and PCA82C250, and on basis of it, we design the CAN bus interface, and gives the hardware circuit design and software process of SJA1000 initialization, receiving, sending message. The system can give some subsequent reference for CAN bus application.展开更多
The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, R...The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, RF generator, low-level system, computer system and cavity cooling. The cavity is based on the coaxial resonator type which is short at the terminal with one gap and loaded with domestic ferrite rings. The RF generator is designed in a push-pull mode. The low-level control system is based on PID, DSP, FPGA and DDS9854+USB interface and has three feedback loops. This RF system is designed independently and manufactured domestically. For the first time, it realized the pulse modulation, variable harmonic and CW operational modes. The maximum output power is up to 70 kW and the 10 kV RF voltage is used to capture the irradiative beam and decelerate the beam from 400 to 30 MeV/u.展开更多
基金Project(2011FZ056)supported by the Applied Basic Research Plan Program of Yunnan Province,China
文摘In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-iron ladle transportation process between blast furnace and basic oxygen furnace. Moreover, basic parameters of material flow were analyzed and optimized, such as time, temperature and material quantity. Based on operating principles of material flow, control methods were optimized, such as product organization mode, scheduling discipline and scheduling plan of hot metal ladle. Finally, the material flow control technology of ironmaking and steelmaking interface was integrated. Satisfactory effects are obtained after applying the technology in practice. The total turnover number of torpedo ladle decreases from 20 to 18, the hot metal temperature of 1# BF torpedo ladle decreases from 36 °C to 19.5 °C, the hot metal temperature of 2# BF torpedo ladle decreases from 36.6 °C to 19.8 °C, the temperature drop of desulfurization hot metal decreases by 4 °C, and the temperature drop of non-desulfurization hot metal decreases by 2.8 °C. Furthermore, the ironmaking and steelmaking interface system will realize high-efficiency control by using this control technology.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.30970875,No.90920015,No.61172008 and No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.
文摘his paper studies the vehicle CAN bus control technology, and analyzes the control system of automobile based on CAN technology. This paper focus on the design of single-chip microcomputer STC89C52 be as the platform to achieve the design of CAN bus, introduce in detail the structure and working principle of SJA1000 and PCA82C250, and on basis of it, we design the CAN bus interface, and gives the hardware circuit design and software process of SJA1000 initialization, receiving, sending message. The system can give some subsequent reference for CAN bus application.
文摘The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, RF generator, low-level system, computer system and cavity cooling. The cavity is based on the coaxial resonator type which is short at the terminal with one gap and loaded with domestic ferrite rings. The RF generator is designed in a push-pull mode. The low-level control system is based on PID, DSP, FPGA and DDS9854+USB interface and has three feedback loops. This RF system is designed independently and manufactured domestically. For the first time, it realized the pulse modulation, variable harmonic and CW operational modes. The maximum output power is up to 70 kW and the 10 kV RF voltage is used to capture the irradiative beam and decelerate the beam from 400 to 30 MeV/u.