As a route to improving the energy conversion of organic-inorganic hybrid-solar cells, we have tested the performance of poly(phenylene vinylene)(PPV), poly(2,5-thienylene vinylene)(PWTV) polymers and CdTe nanocrystal...As a route to improving the energy conversion of organic-inorganic hybrid-solar cells, we have tested the performance of poly(phenylene vinylene)(PPV), poly(2,5-thienylene vinylene)(PWTV) polymers and CdTe nanocrystal devices produced via aqueous-processing. It is found that small differences in the conformation of the sensitizer lead to dramatic effects on the solar cell efficiency. Using a combination of UV-Vis absorption spectroscopy and first-principles non-adiabatic molecular dynamics(NAMD) based on time-dependent density-functional theory(TDDFT), PPV is found to have a longer electron injection and recombination time despite seeming to have a better energy alignment with the substrate, which leads to a higher devices performance than PWTV. The present results shed new light on the understanding of organic-inorganic hybrid-solar cells and will trigger further experimental and theoretical investigations.展开更多
基金supported by the National Natural Science Foundation of China(51433003)the National Basic Research Program of China(2014CB643503)
文摘As a route to improving the energy conversion of organic-inorganic hybrid-solar cells, we have tested the performance of poly(phenylene vinylene)(PPV), poly(2,5-thienylene vinylene)(PWTV) polymers and CdTe nanocrystal devices produced via aqueous-processing. It is found that small differences in the conformation of the sensitizer lead to dramatic effects on the solar cell efficiency. Using a combination of UV-Vis absorption spectroscopy and first-principles non-adiabatic molecular dynamics(NAMD) based on time-dependent density-functional theory(TDDFT), PPV is found to have a longer electron injection and recombination time despite seeming to have a better energy alignment with the substrate, which leads to a higher devices performance than PWTV. The present results shed new light on the understanding of organic-inorganic hybrid-solar cells and will trigger further experimental and theoretical investigations.