目前已有的位置指纹室内定位算法大多都是建立在原始指纹数据库的基础上,指纹数据库的建立精度会直接影响到最后的定位精度,因此在基于WiFi的定位技术中,对接收信号强度(received signal strength indication,RSSI)的稳定性要求比较高...目前已有的位置指纹室内定位算法大多都是建立在原始指纹数据库的基础上,指纹数据库的建立精度会直接影响到最后的定位精度,因此在基于WiFi的定位技术中,对接收信号强度(received signal strength indication,RSSI)的稳定性要求比较高。通过对指纹数据的研究,提出了一种基于高斯核函数融合卡尔曼滤波对数据进行预处理的方法。实验证明,该融合算法能有效剔除RSSI指纹数据中的突变数据和噪声波动,实现RSSI值的准确、平滑输出,从而建立准确的指纹数据库,使后期的定位结果更加精确。展开更多
在研究基于RSSI(Received Signal Strength Indication)位置指纹室内定位算法的基础上,设计了一种基于Android平台的室内定位系统。该系统分为定位客户端和服务器端两部分,同时设计了位置指纹库的相关字段。系统主要应用于室内人员的定...在研究基于RSSI(Received Signal Strength Indication)位置指纹室内定位算法的基础上,设计了一种基于Android平台的室内定位系统。该系统分为定位客户端和服务器端两部分,同时设计了位置指纹库的相关字段。系统主要应用于室内人员的定位,不同的系统使用者可以添加各种丰富的基于位置的服务信息,从而提供LBS。展开更多
针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定...针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。展开更多
文摘目前已有的位置指纹室内定位算法大多都是建立在原始指纹数据库的基础上,指纹数据库的建立精度会直接影响到最后的定位精度,因此在基于WiFi的定位技术中,对接收信号强度(received signal strength indication,RSSI)的稳定性要求比较高。通过对指纹数据的研究,提出了一种基于高斯核函数融合卡尔曼滤波对数据进行预处理的方法。实验证明,该融合算法能有效剔除RSSI指纹数据中的突变数据和噪声波动,实现RSSI值的准确、平滑输出,从而建立准确的指纹数据库,使后期的定位结果更加精确。
文摘在研究基于RSSI(Received Signal Strength Indication)位置指纹室内定位算法的基础上,设计了一种基于Android平台的室内定位系统。该系统分为定位客户端和服务器端两部分,同时设计了位置指纹库的相关字段。系统主要应用于室内人员的定位,不同的系统使用者可以添加各种丰富的基于位置的服务信息,从而提供LBS。
文摘针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。