A high gain cascade connected preamplifier for optical receivers is developed with 0.5μm GaAs PHEMT technology from the Nanjing Electronic Devices Institute. To begin with, the transimpedance amplifier has a -3dB ban...A high gain cascade connected preamplifier for optical receivers is developed with 0.5μm GaAs PHEMT technology from the Nanjing Electronic Devices Institute. To begin with, the transimpedance amplifier has a -3dB bandwidth of 10GHz, with a small signal gain of around 9dB. The post-stage distributed amplifier (DA) has a -3dB bandwidth of close to 20GHz,with a small signal gain of around 12dB. As a whole,the cascade preamplifier has a measured small signal gain of 21.3dB and a transimpedance of 55.3dBΩ in a 50Ω system. With a higher signal-to-noise ratio than that of the TIA and a markedly improved waveform distortion compared with that of the DA, the measured output eye diagram for 10Gb/s NRZ pseudorandom binary sequence is clear and symmetric.展开更多
This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large...This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large parasitical capacitor of CMOS photo-detectors,a regulated-cascode structure and noise optimization are used in the design of the transimpedance amplifier. The experimental results indicate that, with a parasitical capacitance of 2pF,a single channel is able to work at bite rates of up to 2.5Gb/s,and a clear eye diagram is obtained with a 0. 8mVpp input. Furthermore, an isolation structure combined with a p^+ guard.ring (PGR), an n^+ guard-ring (NGR),and a deep-n-well (DNW) for parallel amplifier is also presented. Taking this combined structure, the crosstalk and the substrate noise coupling have been effectively reduced. Compared with the isolation of PGR or PGR + NGR,the measured results show that the isolation degree of this structure is improved by 29.2 and 8. ldB at 1GHz,and by 8. 1 and 2. 5dB at 2GHz,respectively. With a 1.8V supply,each channel of the front-end amplifier consumes a DC power of 85mW,and the total power consumption of 12 channels is about 1W.展开更多
A 0. 5mV high sensitivity,200Mbps CMOS limiting amplifier (LA) with 72dB ultra wide dynamic range is described. A novel active DC offset cancellation loop is elaborately analyzed and designed to achieve this perform...A 0. 5mV high sensitivity,200Mbps CMOS limiting amplifier (LA) with 72dB ultra wide dynamic range is described. A novel active DC offset cancellation loop is elaborately analyzed and designed to achieve this performance. Using a signal path, a received signal strength indicator (RSSI), based on the piecewise-linear approximation, is realized with a ± 2dB logarithmic accuracy in a 60dB indicating range. The architecture of the LA and RSSI employed is determined by the optimal sensitivity and RSSI accuracy for a specified speed, gain, and power consumption. It consumes 60mW from a single 5V supply. The active area is 1.05mm^2 using standard 5V 0.6μm CMOS technology.展开更多
文摘A high gain cascade connected preamplifier for optical receivers is developed with 0.5μm GaAs PHEMT technology from the Nanjing Electronic Devices Institute. To begin with, the transimpedance amplifier has a -3dB bandwidth of 10GHz, with a small signal gain of around 9dB. The post-stage distributed amplifier (DA) has a -3dB bandwidth of close to 20GHz,with a small signal gain of around 12dB. As a whole,the cascade preamplifier has a measured small signal gain of 21.3dB and a transimpedance of 55.3dBΩ in a 50Ω system. With a higher signal-to-noise ratio than that of the TIA and a markedly improved waveform distortion compared with that of the DA, the measured output eye diagram for 10Gb/s NRZ pseudorandom binary sequence is clear and symmetric.
文摘This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large parasitical capacitor of CMOS photo-detectors,a regulated-cascode structure and noise optimization are used in the design of the transimpedance amplifier. The experimental results indicate that, with a parasitical capacitance of 2pF,a single channel is able to work at bite rates of up to 2.5Gb/s,and a clear eye diagram is obtained with a 0. 8mVpp input. Furthermore, an isolation structure combined with a p^+ guard.ring (PGR), an n^+ guard-ring (NGR),and a deep-n-well (DNW) for parallel amplifier is also presented. Taking this combined structure, the crosstalk and the substrate noise coupling have been effectively reduced. Compared with the isolation of PGR or PGR + NGR,the measured results show that the isolation degree of this structure is improved by 29.2 and 8. ldB at 1GHz,and by 8. 1 and 2. 5dB at 2GHz,respectively. With a 1.8V supply,each channel of the front-end amplifier consumes a DC power of 85mW,and the total power consumption of 12 channels is about 1W.
文摘A 0. 5mV high sensitivity,200Mbps CMOS limiting amplifier (LA) with 72dB ultra wide dynamic range is described. A novel active DC offset cancellation loop is elaborately analyzed and designed to achieve this performance. Using a signal path, a received signal strength indicator (RSSI), based on the piecewise-linear approximation, is realized with a ± 2dB logarithmic accuracy in a 60dB indicating range. The architecture of the LA and RSSI employed is determined by the optimal sensitivity and RSSI accuracy for a specified speed, gain, and power consumption. It consumes 60mW from a single 5V supply. The active area is 1.05mm^2 using standard 5V 0.6μm CMOS technology.