The virtualized radio access network(v RAN) could implement virtualized baseband functions on general-purpose platforms and expand the processing capacity of the radio access network(RAN) significantly.In this paper,a...The virtualized radio access network(v RAN) could implement virtualized baseband functions on general-purpose platforms and expand the processing capacity of the radio access network(RAN) significantly.In this paper,a Not Only Stack(NO Stack) based vR AN is proposed to be employed in the fifth generation(5G) mobile communication system.It adopts advanced virtualization technologies to maintain flexible and sustainable.The baseband processing and storage resources should be sliced and orchestrated agilely to support multi radio access technology(multiRAT) .Also it is analyzed and demonstrated by different use cases to validate the benefits.The proposed v RAN reduces signaling overheads and service response time in the bearer establishment procedure.Concluded from the analyses and demonstrations,the NO Stack based v RAN could support multi-RAT convergence and flexible networking effectively.展开更多
In industrial X-ray inspection, in order to identify weld defects automatically, raise the identification ratio, and avoid processing of complex background, it is an important step for sequent processing to extract we...In industrial X-ray inspection, in order to identify weld defects automatically, raise the identification ratio, and avoid processing of complex background, it is an important step for sequent processing to extract weld from the image. According to the characteristics of weld radiograph image, median filter is adopted to reduce the noise with high frequency, then relative gray-scale of image is chosen as fuzzy characteristic, and image gray-scale fuzzy matrix is constructed and suitable membership function is selected to describe edge characteristic. A fuzzy algorithm is adopted for enhancing radiograph image processing. Based on the intensity distribution characteristic in weld, methodology of weld extraction is then designed. This paper describes the methodology of all the weld extraction, including reducing noise, fuzzy enhancement and weld extraction process. To prove its effectiveness, this methodology was tested with 64 weld negative images available for this study. The experimental results show that this methodology is very effective for extracting linear weld.展开更多
基金supported by the China's 863 Project(No.2015AA01A706)the National Science and Technology Major Project(No.2016ZX03001017)+1 种基金the Science and Technology Program of Beijing(No.D161100001016002)the Science and Technology Cooperation Projects(No.2015DFT10160B)
文摘The virtualized radio access network(v RAN) could implement virtualized baseband functions on general-purpose platforms and expand the processing capacity of the radio access network(RAN) significantly.In this paper,a Not Only Stack(NO Stack) based vR AN is proposed to be employed in the fifth generation(5G) mobile communication system.It adopts advanced virtualization technologies to maintain flexible and sustainable.The baseband processing and storage resources should be sliced and orchestrated agilely to support multi radio access technology(multiRAT) .Also it is analyzed and demonstrated by different use cases to validate the benefits.The proposed v RAN reduces signaling overheads and service response time in the bearer establishment procedure.Concluded from the analyses and demonstrations,the NO Stack based v RAN could support multi-RAT convergence and flexible networking effectively.
文摘In industrial X-ray inspection, in order to identify weld defects automatically, raise the identification ratio, and avoid processing of complex background, it is an important step for sequent processing to extract weld from the image. According to the characteristics of weld radiograph image, median filter is adopted to reduce the noise with high frequency, then relative gray-scale of image is chosen as fuzzy characteristic, and image gray-scale fuzzy matrix is constructed and suitable membership function is selected to describe edge characteristic. A fuzzy algorithm is adopted for enhancing radiograph image processing. Based on the intensity distribution characteristic in weld, methodology of weld extraction is then designed. This paper describes the methodology of all the weld extraction, including reducing noise, fuzzy enhancement and weld extraction process. To prove its effectiveness, this methodology was tested with 64 weld negative images available for this study. The experimental results show that this methodology is very effective for extracting linear weld.