In order to study the stability of friction and contact of the rotating tribological pair system,considering the influence of the changeable factors on the stability,the system dynamics analysis model based on the Lag...In order to study the stability of friction and contact of the rotating tribological pair system,considering the influence of the changeable factors on the stability,the system dynamics analysis model based on the Lagrange equation is firstly established.The surface contact stiffness model is determined on the basis of the fractal theory.The model of the friction torque with velocities is created by using the Stribeck friction effect.The Lyapunov indirect method is employed to explore the eigenvalue problem of the system state equation.The effects of the applied load,the fractal dimension,the fractal scaling coefficient and the Stribeck coefficient on the system stability are investigated in detail.The numerical simulation results demonstrate that the tribological pair system is prone to causing system instability at low speed,and the system instability boundary value decreases when the Stribeck coefficient decreases.The fractal dimension and the fractal scaling coefficient impact the system stability slightly when fractal dimensions are large,and the system instability can be reduced by properly increasing the surface smoothness.Moreover,the system instability evidently increases with the increase in the applied load and the Stribeck coefficient.These achievements can provide a reference and theoretical support for the analysis of the dynamic performance of the tribological pair system.展开更多
Based on an improved three-dimensional wheel-rail contact trace algorithm and a new model of wheel-rail contact force, wheel-rail derailment dynamical model is established on China Railways High-speed(CRH) vehicle a...Based on an improved three-dimensional wheel-rail contact trace algorithm and a new model of wheel-rail contact force, wheel-rail derailment dynamical model is established on China Railways High-speed(CRH) vehicle and developed in MATLAB software, which is called dynamical derailment system for CRH (DDSCRH). Analyzed on dynamical derailment process of high speed vehicle by DDSCRH, the critical position on chmb wheel and influence factors on lateral force for derailment are obtained. Finally, high-speed vehicle dynamical simulation is verified on DDSCRH by comparing with the existing results of the line test.展开更多
The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model...The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.展开更多
In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (F...In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and con- tinuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.展开更多
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Transformation Program of Scientific and Technological Achievements of Jiangsu Province(No.201701213).
文摘In order to study the stability of friction and contact of the rotating tribological pair system,considering the influence of the changeable factors on the stability,the system dynamics analysis model based on the Lagrange equation is firstly established.The surface contact stiffness model is determined on the basis of the fractal theory.The model of the friction torque with velocities is created by using the Stribeck friction effect.The Lyapunov indirect method is employed to explore the eigenvalue problem of the system state equation.The effects of the applied load,the fractal dimension,the fractal scaling coefficient and the Stribeck coefficient on the system stability are investigated in detail.The numerical simulation results demonstrate that the tribological pair system is prone to causing system instability at low speed,and the system instability boundary value decreases when the Stribeck coefficient decreases.The fractal dimension and the fractal scaling coefficient impact the system stability slightly when fractal dimensions are large,and the system instability can be reduced by properly increasing the surface smoothness.Moreover,the system instability evidently increases with the increase in the applied load and the Stribeck coefficient.These achievements can provide a reference and theoretical support for the analysis of the dynamic performance of the tribological pair system.
文摘Based on an improved three-dimensional wheel-rail contact trace algorithm and a new model of wheel-rail contact force, wheel-rail derailment dynamical model is established on China Railways High-speed(CRH) vehicle and developed in MATLAB software, which is called dynamical derailment system for CRH (DDSCRH). Analyzed on dynamical derailment process of high speed vehicle by DDSCRH, the critical position on chmb wheel and influence factors on lateral force for derailment are obtained. Finally, high-speed vehicle dynamical simulation is verified on DDSCRH by comparing with the existing results of the line test.
文摘The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.
基金supported by the National Natural Science Foundation of China (Grant No. 10476019)the Fundamental Research Funds for the Central Universities (Grant No. JY10000904018)
文摘In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and con- tinuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.