Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementati...Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementation of SO_2 absorption in hydrophilic ceramic membrane that exhibits outstanding thermal and mechanical stabilities.With this aim,we investigated experimentally the performance of SO_2 absorption into aqueous sodium hydroxide (NaOH) solution in a hydrophilic alumina (Al_2O_3) membrane contactor in terms of SO_2 removal efficiency and SO_2 mass transfer flux,and compared the performance with that in a hydrophobic one.A series of experiments were performed at various conditions over a NaOH concentration range of 0–1.0 mol·L^(-1),a liquid flow rate range of 30–180 ml·min^(-1),a gas flow rate range of 120–1000 ml·min^(-1),an inlet SO_2 concentration range of 400–2000μl·L^(-1),and a temperature range of 10–35°C.It was found that the hydrophilic membrane was more competitive when using a NaOH concentration higher than 0.2 mol·L^(-1).Furthermore,it can be inferred that the hydrophilicα-Al_2O_3 membrane exhibited exceptional long-term stability under 480 h continuous operation.展开更多
Effects of nano SbSbS4particles on contact fatigue life of a steel ball were evaluated on a self-made ball-rod contact fatigue tester. The anti-fatigue mechanisms of SbSbS4 additive were analyzed by means of SEM and E...Effects of nano SbSbS4particles on contact fatigue life of a steel ball were evaluated on a self-made ball-rod contact fatigue tester. The anti-fatigue mechanisms of SbSbS4 additive were analyzed by means of SEM and EDAX. It was shown that, when the grease contained SbSbS4, contact fatigue life was improved compared with that of base grease. Nanoparticle absorption action, nanoparticle infiltration action, and extreme pressure and anti-friction performance, explained why SbSbS4 increased the contact fatigue life of the steel ball tested.展开更多
This paper focuses on the effects of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip, a double squealer tip, a...This paper focuses on the effects of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip, a double squealer tip, a pressure side tip shelf with inclined squealer tip on a double squealer tip, a tip platform extension edge in pressure side and in suction side respectively. A pressure-correction based, 3D Reynolds-averaged Navier-Stokes equations CFD code with Reynolds Stress Model was adopted. The variable specific heat was considered. The detailed tip clearance flow field with different squealer rims was described with the streamline and the velocity vector. Accordingly, the mechanisms of five passive controls were elucidated; the effects of the passive controls on turbine efficiency and tip clearance flow field were illuminated. The results showed that the secondary flow loss near the outer casing including the tip leakage losses and the passage vortex losses could be reduced in all the five passive control methods. The turbine efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine efficiency, and the efficiency increased by 0.215%.展开更多
The gas and wave's motion in a receiving tube are investigated numerically and experimentally in the present paper. The results show that, velocity of the contact face rises rapidly as gas is injected into the receiv...The gas and wave's motion in a receiving tube are investigated numerically and experimentally in the present paper. The results show that, velocity of the contact face rises rapidly as gas is injected into the receiving tube, and then drops sharply after a steady propagation. However, velocity of the wave in the tube is almost linear and the wave can be reflected at the close end of the receiving tube. With increasing of inlet pressure, velocity of the wave and steady velocity of contact face also increase. There is obvious thermal effect as the wave sweeps the gas. The reflected wave can heat the exhausting gas in the open end. As an absorber, an expander and a shrink in the robe can almost completely absorb the reflected wave.展开更多
基金Supported by the National Key R&D Plan(2016YFC0205700)the National Natural Science Foundation of China(91534108,21506093,21706114)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20150947,BK20160979)the National High Technology Research and Development Program of China(2012AA03A606)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementation of SO_2 absorption in hydrophilic ceramic membrane that exhibits outstanding thermal and mechanical stabilities.With this aim,we investigated experimentally the performance of SO_2 absorption into aqueous sodium hydroxide (NaOH) solution in a hydrophilic alumina (Al_2O_3) membrane contactor in terms of SO_2 removal efficiency and SO_2 mass transfer flux,and compared the performance with that in a hydrophobic one.A series of experiments were performed at various conditions over a NaOH concentration range of 0–1.0 mol·L^(-1),a liquid flow rate range of 30–180 ml·min^(-1),a gas flow rate range of 120–1000 ml·min^(-1),an inlet SO_2 concentration range of 400–2000μl·L^(-1),and a temperature range of 10–35°C.It was found that the hydrophilic membrane was more competitive when using a NaOH concentration higher than 0.2 mol·L^(-1).Furthermore,it can be inferred that the hydrophilicα-Al_2O_3 membrane exhibited exceptional long-term stability under 480 h continuous operation.
基金Sponsored by State Key Laboratory of Solid Lubrication Opening Foundation(Grant No.0303).
文摘Effects of nano SbSbS4particles on contact fatigue life of a steel ball were evaluated on a self-made ball-rod contact fatigue tester. The anti-fatigue mechanisms of SbSbS4 additive were analyzed by means of SEM and EDAX. It was shown that, when the grease contained SbSbS4, contact fatigue life was improved compared with that of base grease. Nanoparticle absorption action, nanoparticle infiltration action, and extreme pressure and anti-friction performance, explained why SbSbS4 increased the contact fatigue life of the steel ball tested.
文摘This paper focuses on the effects of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip, a double squealer tip, a pressure side tip shelf with inclined squealer tip on a double squealer tip, a tip platform extension edge in pressure side and in suction side respectively. A pressure-correction based, 3D Reynolds-averaged Navier-Stokes equations CFD code with Reynolds Stress Model was adopted. The variable specific heat was considered. The detailed tip clearance flow field with different squealer rims was described with the streamline and the velocity vector. Accordingly, the mechanisms of five passive controls were elucidated; the effects of the passive controls on turbine efficiency and tip clearance flow field were illuminated. The results showed that the secondary flow loss near the outer casing including the tip leakage losses and the passage vortex losses could be reduced in all the five passive control methods. The turbine efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine efficiency, and the efficiency increased by 0.215%.
文摘The gas and wave's motion in a receiving tube are investigated numerically and experimentally in the present paper. The results show that, velocity of the contact face rises rapidly as gas is injected into the receiving tube, and then drops sharply after a steady propagation. However, velocity of the wave in the tube is almost linear and the wave can be reflected at the close end of the receiving tube. With increasing of inlet pressure, velocity of the wave and steady velocity of contact face also increase. There is obvious thermal effect as the wave sweeps the gas. The reflected wave can heat the exhausting gas in the open end. As an absorber, an expander and a shrink in the robe can almost completely absorb the reflected wave.