Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The res...Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The results demonstrate a strong dependence of the interfacial spin polarization on the contact configuration, where the sign of spin polarization may vary from positive to negative with the change of contact configuration. By analyzing the projected density of states, an interracial orbital hybridization between the 3d orbital of the nickel atom and the sp3 hybridized orbital of the sulfur atom is observed. We also simulated the interracial adsorption in mechanically controllable break junction experiments. The magne- toresistance obtained from Julliere model is about 27% based on the calculated interracial spin polarization, which is consistent with experimental measurement.展开更多
Although numerical simulation tools are now very powerful,the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding conta...Although numerical simulation tools are now very powerful,the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications.For the line contact structures widely used in the engineering field,few analytical models are available for predicting the mechanical behaviour when the structures deform plastically,as the classic Hertz’s theory would be invalid.Thus,the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism.A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained.The proposed model was verified through an actual line contact test and a corresponding numerical simulation.The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.展开更多
The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,t...The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures.展开更多
文摘Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The results demonstrate a strong dependence of the interfacial spin polarization on the contact configuration, where the sign of spin polarization may vary from positive to negative with the change of contact configuration. By analyzing the projected density of states, an interracial orbital hybridization between the 3d orbital of the nickel atom and the sp3 hybridized orbital of the sulfur atom is observed. We also simulated the interracial adsorption in mechanically controllable break junction experiments. The magne- toresistance obtained from Julliere model is about 27% based on the calculated interracial spin polarization, which is consistent with experimental measurement.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602022,and 11727801)the opening projects from the State Key Laboratory of Explosion Science and Technology(Grant No.KFJJ16-05M)the State Key Laboratory of Earthquake Dynamics(Grant No.LED2016B02)
文摘Although numerical simulation tools are now very powerful,the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications.For the line contact structures widely used in the engineering field,few analytical models are available for predicting the mechanical behaviour when the structures deform plastically,as the classic Hertz’s theory would be invalid.Thus,the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism.A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained.The proposed model was verified through an actual line contact test and a corresponding numerical simulation.The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.
基金the Science Challenge Project(Grant No.TZ2018002)the National Natural Science Foundation of China(Grant Nos.11972205 and 11722218)+1 种基金the National Key Research Development Program of China(Grant No.2017YFB0702003)Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province.
文摘The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures.