The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations ...The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).展开更多
Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such...Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such as floating production storage and offloading (FPSO) or semi-submersibles. In this work, the time-domain fatigue analysis of SLWR was adopted for better representing the structural nonlinearity, fluid load nonlinearity and riser-soil nonlinear interaction. The Palmgren-Miner rule was employed for the fatigue life prediction along the riser length. The main purpose of this analysis is to present sensitivity analyses of SLWR fatigue life under various input parameters, which include the structural damping, the hydrodynamic coefficients along the riser, the seabed stiffness, the vessel motions, etc. The analyses indicated the strong dependence of the riser fatigue life on these parameters. The results can help designers to understand the dynamic behavior of the SLWR and provide guidance for selection of some critical parameters that are used in the fatigue design.展开更多
基金Project(2007AA04Z408) supported by the National High-Tech Research and Development Program of ChinaProject(50735006) supported by the National Natural Science Foundation of China
文摘The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004, 51009093)the Research Fund for the Shandong Province Key Laboratory of Ocean Engineering
文摘Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such as floating production storage and offloading (FPSO) or semi-submersibles. In this work, the time-domain fatigue analysis of SLWR was adopted for better representing the structural nonlinearity, fluid load nonlinearity and riser-soil nonlinear interaction. The Palmgren-Miner rule was employed for the fatigue life prediction along the riser length. The main purpose of this analysis is to present sensitivity analyses of SLWR fatigue life under various input parameters, which include the structural damping, the hydrodynamic coefficients along the riser, the seabed stiffness, the vessel motions, etc. The analyses indicated the strong dependence of the riser fatigue life on these parameters. The results can help designers to understand the dynamic behavior of the SLWR and provide guidance for selection of some critical parameters that are used in the fatigue design.