The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution condi...The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution conditioners,and four anode solution supply times were used for clayey soil improvement.Based on the experimental data,electro-osmotic consolidation theory,and transport of ion theory,it is found that the electro-osmotic chemical effect of the separation of electrode–clay(E_S)is more beneficial for the transport of Ca^(2+),production of cementing material,and reduction of water content than that of electrode–clay(E_C)joining;through electrode–clay contact separation,the anode solution conditioner(NaPO3)6(E_SHMP)delayed the cementing reaction and then increased the transport of Ca^(2+)near the cathode,which increased the amount of cementing material and the electro-osmotic chemical effect;and when the anode conditioner(NaPO3)6 was used,two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical,which resolved the uneven electro-osmotic chemical effect in the E_SHMP.展开更多
This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r...This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.展开更多
In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depend...In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depends on cell resistance but also on the electrical conductivity of the various applied contact and protective layers. Various layers have been tested under simulated SOFC conditions, and results have shown that the lowest ASR value, about 3 mΩ.cm2, was obtained for an LSM (2) contact layer. A significantly higher resistance was found for the combined contact and protective layer LCC10-Mn3O4, being around 37 mΩ.cm2 Related to the various tests, the total ASR of an F-design stack, developed by Forschungszentrum Jiilich, under ideal conditions can be estimated. In this case the ASR value was calculated as the sum of that of the LCC10-Mn3O4 layer and the formed oxide scale due to oxidation of Crofer22APU. Contacting resistance at the anode side was considered negligible. When differences in the ASR values occurred when compared with that from current-voltage measurements performed with real SOFC stacks, this can be explained by the limited contact area between interconnect and cathode. These results can be used to model the influence of various applied layers and different geometric contact areas on the overall ASR as determined from performance measurements with SOFC stacks.展开更多
基金Project(41902280)supported by the National Natural Science Foundation of ChinaProject(300102219105)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(LP1922)supported by the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering,ChinaProject(XJKFJJ201805)supported by the Open Foundation of Shaanxi Key Laboratory of Safety and Durability of Concrete Structures,China。
文摘The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution conditioners,and four anode solution supply times were used for clayey soil improvement.Based on the experimental data,electro-osmotic consolidation theory,and transport of ion theory,it is found that the electro-osmotic chemical effect of the separation of electrode–clay(E_S)is more beneficial for the transport of Ca^(2+),production of cementing material,and reduction of water content than that of electrode–clay(E_C)joining;through electrode–clay contact separation,the anode solution conditioner(NaPO3)6(E_SHMP)delayed the cementing reaction and then increased the transport of Ca^(2+)near the cathode,which increased the amount of cementing material and the electro-osmotic chemical effect;and when the anode conditioner(NaPO3)6 was used,two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical,which resolved the uneven electro-osmotic chemical effect in the E_SHMP.
基金Projects(11304243,11102164)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+3 种基金Project(12JK0966)supported by the Shaanxi Provincial Education Department,ChinaProject(2013QDJ037)supported by the Xi’an University of Science and Technology Dr Scientific Research Fund,ChinaProject(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NPU,China
文摘This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.
文摘In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depends on cell resistance but also on the electrical conductivity of the various applied contact and protective layers. Various layers have been tested under simulated SOFC conditions, and results have shown that the lowest ASR value, about 3 mΩ.cm2, was obtained for an LSM (2) contact layer. A significantly higher resistance was found for the combined contact and protective layer LCC10-Mn3O4, being around 37 mΩ.cm2 Related to the various tests, the total ASR of an F-design stack, developed by Forschungszentrum Jiilich, under ideal conditions can be estimated. In this case the ASR value was calculated as the sum of that of the LCC10-Mn3O4 layer and the formed oxide scale due to oxidation of Crofer22APU. Contacting resistance at the anode side was considered negligible. When differences in the ASR values occurred when compared with that from current-voltage measurements performed with real SOFC stacks, this can be explained by the limited contact area between interconnect and cathode. These results can be used to model the influence of various applied layers and different geometric contact areas on the overall ASR as determined from performance measurements with SOFC stacks.