随着城市的进步和不断发展,智能驾驶车辆逐渐代替路段中的部分人工驾驶车辆,但在未来较长时间内人工驾驶车辆并不会被完全取代,此时出现网联车与人工驾驶车辆的混驾环境,即目前以及未来时间内我们面临的驾驶环境。网联车与人工驾驶车辆...随着城市的进步和不断发展,智能驾驶车辆逐渐代替路段中的部分人工驾驶车辆,但在未来较长时间内人工驾驶车辆并不会被完全取代,此时出现网联车与人工驾驶车辆的混驾环境,即目前以及未来时间内我们面临的驾驶环境。网联车与人工驾驶车辆驾驶行为在路段内相互干扰,造成混合车流行驶效率低下。为减弱2种车辆间的相互作用,提出一种分离混驾环境下网联车和人工驾驶车辆的分阶段动态车道引导算法(dynamic lane guidance algorithm for separating CAVs and HDVs in mixed traffic environment,SCHME)。通过该算法分离在交叉口上游路段的混合流车辆集合,调整智能驾驶车辆的行驶路线并进行实时动态更新,在满足运动学约束收敛的条件下,人工驾驶车辆根据网联车的动态路线进行相应调整,实现在每辆车广义安全损失成本最小的情况下提高路段内混驾环境下车辆运行效率。通过MATLAB模拟车辆在进入交叉口前的车辆运行状态,结果表明,SCHME算法可在广义安全损失成本最小的情况下提高路段内平均车辆通行效率(17.29%),同时当车辆优化数组越大,车辆集合距离交叉口越远时,智能驾驶车辆渗透率越低,每辆车的道路广义安全损失成本越低。展开更多
From the development of modern transportation to the current era of high-speed transportation networks, the Beijing-Tianjin-Hebei(BTH) region has always played a national leading role in land transportation developmen...From the development of modern transportation to the current era of high-speed transportation networks, the Beijing-Tianjin-Hebei(BTH) region has always played a national leading role in land transportation development of China. In order to explore the long-term evolutionary characteristics of land transportation in the BTH region, this paper utilized a temporal scale of 100 years to systematically interpret the development process of the land transportation network. Taking 13 cities within the BTH region as research anchor cities, we took into account "leaping" mode of transportation in order to investigate the evolution of accessibility. Our research shows the following results:(1) The land transportation network in the BTH region has undergone five stages of development: the initial period of modernization(1881–1937); the period of stagnation of transportation development(1937–1949); the network expansion period(1949–1980); the period of trunk construction(1980–1995), and the period of high-speed transportation network development(1995–present). The network structure centered around Beijing has existed from the outset of modern transportation development.(2) The accessibility spatial pattern of land transportation in BTH region has evolved from expansion along traffic corridors to the formation of concentric circles. The stratified circular structure of transportation in anchor cities has gradually developed into a contiguous development pattern.(3) There are clear hierarchical differences in the transportation structures of anchor cities. Beijing has always been at the top of this hierarchy, while the hierarchical position of Zhangjiakou has fallen noticeably since 1949. The Beijing-Tianjin region was the first region to form a short-duration transportation circle structure, while the transportation advantages of the central part of Hebei Province, which is located in the center of the BTH transportation region, have yet to be realized.展开更多
文摘随着城市的进步和不断发展,智能驾驶车辆逐渐代替路段中的部分人工驾驶车辆,但在未来较长时间内人工驾驶车辆并不会被完全取代,此时出现网联车与人工驾驶车辆的混驾环境,即目前以及未来时间内我们面临的驾驶环境。网联车与人工驾驶车辆驾驶行为在路段内相互干扰,造成混合车流行驶效率低下。为减弱2种车辆间的相互作用,提出一种分离混驾环境下网联车和人工驾驶车辆的分阶段动态车道引导算法(dynamic lane guidance algorithm for separating CAVs and HDVs in mixed traffic environment,SCHME)。通过该算法分离在交叉口上游路段的混合流车辆集合,调整智能驾驶车辆的行驶路线并进行实时动态更新,在满足运动学约束收敛的条件下,人工驾驶车辆根据网联车的动态路线进行相应调整,实现在每辆车广义安全损失成本最小的情况下提高路段内混驾环境下车辆运行效率。通过MATLAB模拟车辆在进入交叉口前的车辆运行状态,结果表明,SCHME算法可在广义安全损失成本最小的情况下提高路段内平均车辆通行效率(17.29%),同时当车辆优化数组越大,车辆集合距离交叉口越远时,智能驾驶车辆渗透率越低,每辆车的道路广义安全损失成本越低。
基金National Natural Science Foundation of China,No.41701122,No.41430635China Postdoctoral Science Foundation,No.2017M611854,No.2016M600356
文摘From the development of modern transportation to the current era of high-speed transportation networks, the Beijing-Tianjin-Hebei(BTH) region has always played a national leading role in land transportation development of China. In order to explore the long-term evolutionary characteristics of land transportation in the BTH region, this paper utilized a temporal scale of 100 years to systematically interpret the development process of the land transportation network. Taking 13 cities within the BTH region as research anchor cities, we took into account "leaping" mode of transportation in order to investigate the evolution of accessibility. Our research shows the following results:(1) The land transportation network in the BTH region has undergone five stages of development: the initial period of modernization(1881–1937); the period of stagnation of transportation development(1937–1949); the network expansion period(1949–1980); the period of trunk construction(1980–1995), and the period of high-speed transportation network development(1995–present). The network structure centered around Beijing has existed from the outset of modern transportation development.(2) The accessibility spatial pattern of land transportation in BTH region has evolved from expansion along traffic corridors to the formation of concentric circles. The stratified circular structure of transportation in anchor cities has gradually developed into a contiguous development pattern.(3) There are clear hierarchical differences in the transportation structures of anchor cities. Beijing has always been at the top of this hierarchy, while the hierarchical position of Zhangjiakou has fallen noticeably since 1949. The Beijing-Tianjin region was the first region to form a short-duration transportation circle structure, while the transportation advantages of the central part of Hebei Province, which is located in the center of the BTH transportation region, have yet to be realized.