N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the p...N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)展开更多
The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in ...The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in addition to regulate the system bus voltage. This paper presents performance analysis of Unified Power Flow Controller based on two axis theory. Based on this analysis, a new Artificial Neural Network (ANN) based controller has been proposed to improve the system performance. The controller rules are structured depending upon the relationship between series inserted voltage and the desired changes in real/reactive power flow in the power system. The effects of different controllers along with parameters of series transformer and transmission line have been investigated through developed control block model in SIMULINK tool box of MATLAB. The effectiveness of the proposed scheme is demonstrated by case studies.展开更多
This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic ...This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.展开更多
基金the Portuguese Ministry of Science and Technology(FCT-MCTES)for offering post-doctoral fellowships through the grants SFRH/BPD/34542/2007 and SFRH/BPD/35055/2007,respectivelyfinanced by FCT-MCTES through CENIMAT-I3N
文摘N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)
文摘The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in addition to regulate the system bus voltage. This paper presents performance analysis of Unified Power Flow Controller based on two axis theory. Based on this analysis, a new Artificial Neural Network (ANN) based controller has been proposed to improve the system performance. The controller rules are structured depending upon the relationship between series inserted voltage and the desired changes in real/reactive power flow in the power system. The effects of different controllers along with parameters of series transformer and transmission line have been investigated through developed control block model in SIMULINK tool box of MATLAB. The effectiveness of the proposed scheme is demonstrated by case studies.
文摘This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.