A 32 kbit OTP(one-time programmable)memory for MCUs(micro-controller units)used in remote controllers was designed.This OTP memory is used for program and data storage.It is required to apply 5.5V to BL(bit-line)and 1...A 32 kbit OTP(one-time programmable)memory for MCUs(micro-controller units)used in remote controllers was designed.This OTP memory is used for program and data storage.It is required to apply 5.5V to BL(bit-line)and 11V to WL(word-line)for a OTP cell of 0.35μm ETOX(EEPROM tunnel oxide)type by MagnaChip.We use 5V transistors on column data paths to reduce the area of column data paths since they require small areas.In addition,we secure device reliability by using HV(high-voltage)transistors in the WL driver.Furthermore,we change from a static logic to a dynamic logic used for the WL driver in the core circuit.Also,we optimize the WD(write data)switch circuit.Thus,we can implement them with a small-area design.In addition,we implement the address predecoder with a small-area logic circuit.The area of the designed 32 kbit OTP with 5V and HV devices is 674.725μm×258.75μm(=0.1745mm2)and is 56.3% smaller than that using 3.3V devices.展开更多
In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided...In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided by steel rope, increasing force by the movable pulley group, modular, convenient and flexible. Dynamics model for controller is deduced based on the constitutive equation of viscoelasticity. Controller is designed for position control and is based on the viscoelasticity dynamics model compensation control strategy proposed. The control system is based on the TURBO PMAC multi-axis motion control card.Prototype loading experiments and velocity experiments results show that the FDU can reach 2 Hz with no load and the max speed of 30(°)/s. The FDU has the capability of the load torque 11.2 N·m and the speed of 24(°)/s simultaneously, and the frequency response is 1.3 Hz. The FDU can be used to be the pitch joint of hip for biped robot whose walking speed is 0.144 km/h theoretically.展开更多
The purpose of this paper is to design a neuron adaptive PID controller based on the theory of intelligent control of the extens- ive research on the characteristics of neuronss, neurons and PID controller. Artificial...The purpose of this paper is to design a neuron adaptive PID controller based on the theory of intelligent control of the extens- ive research on the characteristics of neuronss, neurons and PID controller. Artificial neurons have the adaptive, parallel processing, selflearning learning, and mare fault-tolerant characteristics. When the artificial neurons are used to control the process, the syste^n will enabled to en-sure that the accused has strong anti-interference capability and ro. bustness.展开更多
This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the st...This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.展开更多
Manufacturing plants are increasingly complex and integrated, requiring control systems able to identify the interactions between the various operating units. Production planning and control design of a process are to...Manufacturing plants are increasingly complex and integrated, requiring control systems able to identify the interactions between the various operating units. Production planning and control design of a process are tools that, if combined, bring many economic benefits to the processes since they aim to identify and maintain optimal decision operations to a system. This work uses such integration between production planning and plantwide control to propose a control system for the Williams-Otto plant from the definition of the operating optimal point for coordinated decentralized optimization, in which the original optimization problem decomposition into smaller coordinated problems ensure that the found local optimum also meets the requirements of the global system. The results for decentralized optimization are satisfactory and very similar to the global optimum problem and to the control system response proposed based on the optimal obtained. It is effective taking smooth actions, working with (economic) optimal set points (economically) of operation. The unification of production planning techniques and plantwide control techniques is an effective tool for the control system design for entire plants.展开更多
This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are ...This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are discussed in this paper. Compared with electronic computer, it can work at some special environment, such as high temperature and high pressure Consequently, the heat computer is not only a new special computer, but also a lot of new heat computation cell or device could be invented in the future. The thermal computer and control device are a new thermal energy machines powered by heat energy, it is significant for the environmental protection, energy usage and developed and new discipline development.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects,Korea
文摘A 32 kbit OTP(one-time programmable)memory for MCUs(micro-controller units)used in remote controllers was designed.This OTP memory is used for program and data storage.It is required to apply 5.5V to BL(bit-line)and 11V to WL(word-line)for a OTP cell of 0.35μm ETOX(EEPROM tunnel oxide)type by MagnaChip.We use 5V transistors on column data paths to reduce the area of column data paths since they require small areas.In addition,we secure device reliability by using HV(high-voltage)transistors in the WL driver.Furthermore,we change from a static logic to a dynamic logic used for the WL driver in the core circuit.Also,we optimize the WD(write data)switch circuit.Thus,we can implement them with a small-area design.In addition,we implement the address predecoder with a small-area logic circuit.The area of the designed 32 kbit OTP with 5V and HV devices is 674.725μm×258.75μm(=0.1745mm2)and is 56.3% smaller than that using 3.3V devices.
基金Project(2006AA04Z201,2012AA041601)supported by the National High-Tech Research and Development Program of China
文摘In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided by steel rope, increasing force by the movable pulley group, modular, convenient and flexible. Dynamics model for controller is deduced based on the constitutive equation of viscoelasticity. Controller is designed for position control and is based on the viscoelasticity dynamics model compensation control strategy proposed. The control system is based on the TURBO PMAC multi-axis motion control card.Prototype loading experiments and velocity experiments results show that the FDU can reach 2 Hz with no load and the max speed of 30(°)/s. The FDU has the capability of the load torque 11.2 N·m and the speed of 24(°)/s simultaneously, and the frequency response is 1.3 Hz. The FDU can be used to be the pitch joint of hip for biped robot whose walking speed is 0.144 km/h theoretically.
文摘The purpose of this paper is to design a neuron adaptive PID controller based on the theory of intelligent control of the extens- ive research on the characteristics of neuronss, neurons and PID controller. Artificial neurons have the adaptive, parallel processing, selflearning learning, and mare fault-tolerant characteristics. When the artificial neurons are used to control the process, the syste^n will enabled to en-sure that the accused has strong anti-interference capability and ro. bustness.
文摘This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.
文摘Manufacturing plants are increasingly complex and integrated, requiring control systems able to identify the interactions between the various operating units. Production planning and control design of a process are tools that, if combined, bring many economic benefits to the processes since they aim to identify and maintain optimal decision operations to a system. This work uses such integration between production planning and plantwide control to propose a control system for the Williams-Otto plant from the definition of the operating optimal point for coordinated decentralized optimization, in which the original optimization problem decomposition into smaller coordinated problems ensure that the found local optimum also meets the requirements of the global system. The results for decentralized optimization are satisfactory and very similar to the global optimum problem and to the control system response proposed based on the optimal obtained. It is effective taking smooth actions, working with (economic) optimal set points (economically) of operation. The unification of production planning techniques and plantwide control techniques is an effective tool for the control system design for entire plants.
基金Acknowledgment: The paper was supported by the Nature Science Foundation of China (No. 50876034), Ph.D. Science Foundation of Ministry. of Education of China (No. 20040487039): Key Discipline Construction Foundation of Shanghai Education Commission (No. J5180|): Science Foundation of Shanghai Education Commission (No. 08ZY79) SSPU Science Foundation (No. DZ207004).
文摘This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are discussed in this paper. Compared with electronic computer, it can work at some special environment, such as high temperature and high pressure Consequently, the heat computer is not only a new special computer, but also a lot of new heat computation cell or device could be invented in the future. The thermal computer and control device are a new thermal energy machines powered by heat energy, it is significant for the environmental protection, energy usage and developed and new discipline development.